Navigation Links
University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells
Date:6/18/2010

A team of University of Minnesota-led researchers has cleared a major hurdle in the drive to build solar cells with potential efficiencies up to twice as high as current levels, which rarely exceed 30 percent.

By showing how energy that is now being lost from semiconductors in solar cells can be captured and transferred to electric circuits, the team has opened a new avenue for solar cell researchers seeking to build cheaper, more efficient solar energy devices. The work is published in this week's Science.

A system built on the research could also slash the cost of manufacturing solar cells by removing the need to process them at very high temperatures.

The achievement crowns six years of work begun at the university Institute of Technology (College of Science and Engineering) chemical engineering and materials science professors Eray Aydil and David Norris and chemistry professor Xiaoyang Zhu (now at the university of Texas-Austin) and spearheaded by U of M graduate student William Tisdale.

In most solar cells now in use, rays from the sun strike the uppermost layer of the cells, which is made of a crystalline semiconductor substanceusually silicon. The problem is that many electrons in the silicon absorb excess amounts of solar energy and radiate that energy away as heat before it can be harnessed.

An early step in harnessing that energy is to transfer these "hot" electrons out of the semiconductor and into a wire, or electric circuit, before they can cool off. But efforts to extract hot electrons from traditional silicon semiconductors have not succeeded.

However, when semiconductors are constructed in small pieces only a few nanometers wide -- "quantum dots" -- their properties change.

"Theory says that quantum dots should slow the loss of energy as heat," said Tisdale. "And a 2008 paper from the University of Chicago showed this to be true. The big question for us was whether we could also speed up the extraction and transfer of hot electrons enough to grab them before they cooled. "

In the current work, Tisdale and his colleagues demonstrated that quantum dotsmade not of silicon but of another semiconductor called lead selenide -- could indeed be made to surrender their "hot" electrons before they cooled. The electrons were pulled away by titanium dioxide, another common inexpensive and abundant semiconductor material that behaves like a wire.

"This is a very promising result," said Tisdale. "We've shown that you can pull hot electrons out very quickly before they lose their energy. This is exciting fundamental science."

The work shows that the potential for building solar cells with efficiencies approaching 66 percent exists, according to Aydil.

"This work is a necessary but not sufficient step for building very high-efficiency solar cells," he said. "It provides a motivation for researchers to work on quantum dots and solar cells based on quantum dots."

The next step is to construct solar cells with quantum dots and study them. But one big problem still remains: "Hot" electrons also lose their energy in titanium dioxide. New solar cell designs will be needed to eliminate this loss, the researchers said.

Still, "I'm comfortable saying that electricity from solar cells is going to be a large fraction of our energy supply in the future," Aydil noted.


'/>"/>

Contact: Preston Smith
smith@umn.edu
612-625-0552
University of Minnesota
Source:Eurekalert  

Related biology technology :

1. Sustainable Technology Company Cerealus and University of Maine Issued Patent for "Barrier Compositions and Articles"
2. Diversity Publication Names University Hospitals One of Top Hospital Systems in the Nation
3. Ben-Gurion University students develop device to help blind manuever
4. Hat-trick for University of Montreal scientists
5. University of Maryland School of Pharmacy Adopts BioSoteria's eLearning Drug Safety Courses
6. Colorado State University student awarded top student prize in laser research
7. Elekta / Mitsubishi Electric Collaboration Helps Japans Gunma University Heavy Ion Medical Center Launch Advanced Carbon Ion Therapy for Treating Cancer
8. The iBridge Network Adds Torontos University Health Network as First Canadian Partner
9. Zymes LLC, University of Windsor and National Research Council of Canada Collaborative Research Presented at the 2010 Experimental Biology Meeting in Anaheim, California
10. Vanderbilt University Hospital Selects Allscripts Care Management
11. RAPS Partners With Chinese University to Develop Regulatory Courses
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells
(Date:4/27/2016)... , April 27, 2016 ... (CSE: NSK) (OTCPink: NSKQB) ( Frankfurt ... an ihre Pressemitteilung vom 13. August 2015 die ... ihre Finanzen um zusätzliche 200.000.000 Einheiten auf 400.000.000 ... Dollar zu bringen. Davon wurden 157.900.000 Einheiten mit ...
(Date:4/27/2016)... Virgin Islands (PRWEB) , ... April 27, 2016 ... ... Company Ltd. (d/b/a Biohaven) is pleased to announce the appointment of John Tilton as ... was an Executive Director and one of the founding commercial leaders responsible for ...
(Date:4/27/2016)... ... April 27, 2016 , ... PathSensors, Inc., ... Advisory Board. Dr. Lamka will assist PathSensors in expanding the use of the ... deploys the CANARY® test platform for the detection of harmful pathogens, including a ...
(Date:4/27/2016)... ... 2016 , ... Global Stem Cells Group CEO Benito Novas announced ... of GSCG affiliate Kimera Labs in Miami. , In 2004, Ross received his Ph.D. ... for hematologic disorders and the suppression of graft vs. host disease (GVHD) under UM ...
Breaking Biology Technology:
(Date:3/14/2016)... March 14, 2016 NXTD ) ("NXT-ID" ... commerce market, announces the airing of a new series of ... week of March 21 st .  The commercials will air ... popular Squawk on the Street show. --> NXTD ... growing mobile commerce market, announces the airing of a new ...
(Date:3/11/2016)... --> --> ... Recognition Market by Technology (Pattern Recognition), by Component (Hardware, ... Type (On-Premises and Cloud), by Industry Vertical and by ... the global market is expected to grow from USD ... 2020, at a CAGR of 19.1%. , ...
(Date:3/9/2016)... 9, 2016 This BCC Research report provides ... the RNA Sequencing (RNA Seq) market for the years ... tools and reagents, data analysis, and services. ... the RNA-Sequencing market such as RNA-Sequencing tools and reagents, ... factors affecting each segment and forecast their market growth, ...
Breaking Biology News(10 mins):