Navigation Links
University of Illinois researchers demonstrate novel, tunable nanoantennas
Date:7/14/2014

A research team from the University of Illinois at Urbana-Champaign has developed a novel, tunable nanoantenna that paves the way for new kinds of plasmonic-based optomechanical systems, whereby plasmonic field enhancement can actuate mechanical motion.

"Recently, there has been a lot of interest in fabricating metal-based nanotextured surfaces that are pre-programmed to alter the properties of light in a specific way after incoming light interacts with it," explained Kimani Toussaint, an associate professor of mechanical science and engineering who led the research. "For our approach, one can take a nanoarray structure that was already fabricated and further reconfigure the plasmonic, and hence, optical properties of select antennas. Therefore, one can decide after fabrication, rather than before, how they want their nanostructure to modify light."

The researchers developed a novel, metal, pillar-bowtie nanoantenna (p-BNA) array template on 500-nanometer tall glass pillars (or posts). In doing so, they demonstrated that the gap size for either individual or multiple p-BNAs can be tuned down to approx. 5 nm (approx. 4x smaller than what is currently achievable using conventional electron-beam lithography techniques).

"On a fundamental level, our work demonstrates electron-beam based manipulation of nanoparticles an order of magnitude larger than previously possible, using a simple SEM operating at only a fraction of the electron energies of previous work," said Brian Roxworthy, who earned his PhD in electrical and computer engineering (ECE) at Illinois and was first author of the paper published in Nature Communications.

"The dramatic deformation of the nanoantennas we observe is facilitated by strong in-gap plasmonic modes excited by the passing electrons, which give rise to nanoNewton-magnitude gradient forces on the constituent metal particles."

The interdisiciplinary research team--that included Abdul Bhuiya (MS student in ECE student), Xin Yu (ECE post-grad), and K.C. Chow (a research engineer at the Micro and Nanotechnology Laboratory)also demonstrated that the gap size for either individual or multiple p-BNAs can be tuned down to approximately 5 nm (roughly 4x smaller than what is currently achievable using conventional electron-beam lithography techniques).

The team demonstrated that an electron beam from a standard scanning electron microscope (SEM) can be used to deform either individual p-BNA structures or groups of p-BNAs within a sub-array with velocities as large as 60 nanometers per second. A photonic-crystal fiber was used to generate (quasi-white light) supercontinuum to probe the spectral response of select regions within the array.

The researchers said the importance of this work is three-fold: It enables tuning of the optical (plasmonic) response of the nanoantennas, down to the level of a single nanoantenna (approximately 250 nanometers across); it could lead to unique, spatially addressable nanophotonic devices for sensing and particle manipulation, for example; and, it provides a fertile platform for studying mechanical, electromagnetic, and thermal phenomena in a nanoscale system.

The team believes that the relatively high aspect ratio (pillar height-to-thickness) of 4.2 for the p-BNAs, along with a significant thermal contribution, permit sufficient compliance of the pillars to be actuated by electron-beam-induced gradient forces. Based on the observed experiments, the gradient force is estimated to be on the order of nanoNewtons.

"Our fabrication process shows for the first time an innovative way of fabricating plasmonic nanoantenna structures under the SEM, which avoids complications such as proximity effects from conventional lithography techniques," Bhuiya said. "This process also reduces the gap of the nanoantennas down to ~5 nm under SEM with a controlled reduction rate. With this new fabrication technique, it opens an avenue to study different phenomena which leads to new exciting research fields."


'/>"/>

Contact: Kimani Toussaint
ktoussai@illinois.edu
217-244-4088
University of Illinois College of Engineering
Source:Eurekalert  

Related biology technology :

1. Arizona State University engineers aim to improve performance of technology in extreme environments
2. BioRestorative Therapies Signs Material Manufacturing Agreement With University of Utah
3. Causes of Gulf War Illness are complex and vary by deployment area -- Baylor University study
4. HistoRx Licenses Melanoma Assay from Yale University
5. Epitomics, Inc. and University of California, Davis, Complete Star Program for High-Throughput Measurement of Antibody-Antigen Interactions
6. Boulder Diagnostics Licenses Novel Rapid Detection Technology for Homocysteine and Related Compounds from Portland State University
7. Research at Rice University leads to nanotube-based device for communication, security, sensing
8. EUR 1.0 Million Grant Awarded to Exosome Diagnostics and Ludwig Maximilian University from German Federal Ministry for Education and Research to Develop Biofluid-Derived Exosome Diagnostics
9. Valkee and University of Oulu Publish the First Clinical Trial on Bright Light Therapy Channeled via ear Canals in Seasonal Depression
10. Oxitec Responds to University of Panamas Forum on Transgenic Mosquitoes
11. Intellect Neurosciences Enters Collaboration Agreement with Leading Alzheimers Research Group at University of California Irvine to Test First in Class Dual Target Vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
University of Illinois researchers demonstrate novel, tunable nanoantennas
(Date:2/23/2017)... , Feb. 23, 2017  Seattle,s upscale Capitol Hill neighborhood, ... strange place for a head lice treatment salon to set ... a Tuscan restaurant and a French bistro on E Madison ... "We aren,t just any old lice clinic, we pride ourselves ... comfortable, and release some of the stigma associated with lice. ...
(Date:2/23/2017)... ... February 23, 2017 , ... Brain Sentinel, Inc. has received ... SPEAC® System, the Brain Sentinel® Seizure Monitoring and Alerting System. The adjunctive seizure ... periods of rest. A lightweight, non-invasive monitor is placed on the belly of ...
(Date:2/23/2017)... ... February 23, 2017 , ... David ... Inventors Recognition Reception at Purdue Research Park of West Lafayette, Indiana. ... recognition of outstanding contributions to, and success with, commercializing discoveries from Purdue research. ...
(Date:2/23/2017)... ... February 23, 2017 , ... The Greater Gift Initiative, Inc , (GGI) ... Compass Research . GGI's mission is to advance global health and highlight the greater ... in honor of each clinical trial volunteer. The vision of GGI is to serve ...
Breaking Biology Technology:
(Date:2/7/2017)... WARSAW, Ind. , Feb. 7, 2017 ... global leader in musculoskeletal healthcare, will present at the ... Lotte New York Palace Hotel on Wednesday, February 15, ... A live webcast of the presentation can be accessed ... for replay following the conference via Zimmer Biomet,s Investor ...
(Date:2/3/2017)... 3, 2017 A new independent identity strategy ... LLP (IdSP) . Designed to fill a critical niche ... market, founding partners Mark Crego and ... just in identity expertise that span federal governments, the ... The Crego-Kephart combined expertise has a common theme born ...
(Date:2/1/2017)... 1, 2017 IDTechEx Research, a leading provider ... announces the availability of a new report, Sensors for Robotics: ... Continue Reading ... ... robots. Source: IDTechEx Report "Sensors for Robotics: Technologies, Markets and Forecasts ...
Breaking Biology News(10 mins):