Navigation Links
Unexpectedly long-range effects in advanced magnetic devices
Date:7/1/2009

A tiny grid pattern has led materials scientists at the National Institute of Standards and Technology (NIST) and the Institute of Solid State Physics in Russia to an unexpected findingthe surprisingly strong and long-range effects of certain electromagnetic nanostructures used in data storage. Their recently reported findings* may add new scientific challenges to the design and manufacture of future ultra-high density data storage devices.

The team was studying the behavior of nanoscale structures that sandwich thin layers of materials with differing magnetic properties. In the past few decades such structures have been the subjects of intense research because they can have unusual and valuable magnetic properties. The data read heads on modern high-density disk drives usually exploit a version of the giant magnetoresistance (GMR) effect, which uses such layered structures for extremely sensitive magnetic field detectors. Arrays of nanoscale sandwiches of a similar type might be used in future data storage devices that would outdo even today's astonishingly capacious microdrives because in principle the structures could be made even smaller than the minimum practical size for the magnetic islands that record data on hard disk drives, according to NIST metallurgist Robert Shull.

The key trick is to cover a thin layer of a ferromagnetic material, in which the magnetic direction of electrons, or "spins," tend to order themselves in the same direction, with an antiferromagnetic layer in which the spins tend to orient in opposite directions. By itself, the ferromagnetic layer will tend to magnetize in the direction of an externally imposed magnetic fieldand just as easily magnetize in the opposite direction if the external field is reversed. For reasons that are still debated, the presence of the antiferromagnetic layer changes this. It biases the ferromagnet in one preferred direction, essentially pinning its field in that orientation. In a magnetoresistance read head, for example, this pinned layer serves as a reference direction that the sensor uses in detecting changing field directions on the disk that it is "reading.".

Researchers have long understood this pinning effect to be a short-range phenomenon. The influence of the antiferromagnetic layer is felt only a few tens of nanometers down into the ferromagnetic layerverticallly. But what about sideways? To find out, the NIST/ISSP team started with a thin ferromagnetic film covering a silicon wafer and then added on top a grid of antiferromagnetic strips about 10 nanometers thick and 10 micrometers wide, separated by gaps of about 100 micrometers. Using an instrument that provided real-time images of the magnetization within grid the structure, the team watched the grid structure as they increased and decreased the magnetic field surrounding it.

What they found surprised them.

As expected, the ferromagnetic material directly under the grid lines showed the pinning effect, but, quite unexpectedly, so did the uncovered material in regions between the grid lines far removed from the antiferromagnetic material. "This pinning effect extends for maybe tens of nanometers down into the ferromagnet right underneath," explains Shull, "so you might expect that there could be some residual effect maybe tens of nanometers away from it to the sides. But you wouldn't expect it to extend 10 micrometers awaythat's 10 thousand nanometers." In fact, the effect extends to regions 50 micrometers away from the closest antiferromagnetic strip, at least 1,000 times further than was previously known to be possible.

The ramifications, says Shull, are that engineers planning to build dense arrays of these structures onto a chip for high-performance memory or sensor devices will find interesting new scientific issues for investigation in optimizing how closely they can be packed without interfering with each other.


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Low Occurrence of Severe Cardiac Side Effects Despite Extensive Prior Doxorubicin Treatment Reported in Pixantrone Pivotal Trial
2. New study examines effects of Graniteville, S.C., chlorine gas disaster
3. Cardiovascular Side Effects of Pioglitazone and Rosiglitazone Linked to Vascular and Energy Pathways by Genomas Clinical Study
4. VAP(R) Cholesterol Test Helps Researchers Identify Treatment Effects of Combination Therapy
5. DermTech and Rady Childrens Hospital-San Diego, Initiate Study to Understand Effects of Vitamin D as a Treatment for Atopic Dermatitis in Children and Young Adults
6. Strong elasticity size effects in ZnO nanowires
7. China Biopharma Effects 1 for 100 Reverse Stock Split
8. CB1400, Patented by Canopus BioPharma, Prevents Tumor Growth and Enhances the Anti-Tumor Effects of Cisplatin and Cetuximab (Erbitux).
9. Job-related stress: NIST demonstrates fatigue effects in silicon
10. Panel to Discuss the Far-Ranging Effects and Consequences of Heart Disease, Which is the Leading Killer in Both Men and Women in the United States
11. Circulation Publishes MERLIN TIMI-36 Data Showing Safety and Anti-Arrhythmic Effects of Ranexa(R)
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Unexpectedly long-range effects in advanced magnetic devices
(Date:12/8/2016)... , ... December 08, 2016 , ... ... the business of innovation is taking over sports. On Thursday, December 15th a ... how technology is disrupting the playing field at a Smart Talk session. Smart ...
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire-USNewswire/ ... treatments for congestive heart failure and type 2 ... license for a novel adeno-associated virus (AAV) vector ... Kay , M.D., Ph.D., at Stanford University. The ... of its paracrine gene therapy product pipeline. ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... that provide essential device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, ... The FOMD-ACV-A4 is a small, thin, SODIMM-style module that fits a standard 204-pin ...
(Date:12/8/2016)...  Anaconda BioMed S.L., a pre-clinical stage medical device ... neuro-thrombectomy system for the treatment of Acute Ischemic Stroke ... to join its Scientific Advisory Board (SAB). The SAB ... scientific and clinical experts to Anaconda BioMed S.L., as ... ® to its clinical phase. The SAB is ...
Breaking Biology Technology:
(Date:11/28/2016)... LONDON , Nov. 28, 2016 ... at a rate of 16.79%" The biometric system ... to grow further in the near future. The biometric ... 32.73 billion in 2022, at a CAGR of 16.79% ... biometrics system, integration of biometric technology in smartphones, rising ...
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/21/2016)... 21, 2016   Neurotechnology , a provider ... today announced that the MegaMatcher On Card fingerprint ... for the NIST Minutiae Interoperability Exchange (MINEX) ... mandatory steps of the evaluation protocol. ... test of fingerprint templates used to establish compliance ...
Breaking Biology News(10 mins):