Navigation Links
Understanding interface properties of graphene paves way for new applications

Researchers from North Carolina State University and the University of Texas have revealed more about graphene's mechanical properties and demonstrated a technique to improve the stretchability of graphene developments that should help engineers and designers come up with new technologies that make use of the material.

Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and nanocomposites. And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials.

"This research tells us how strong the interface is between graphene and a stretchable substrate," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. "Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by 'buckling' the graphene."

The researchers looked at how a graphene monolayer a layer of graphene only one atom thick interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a polymer substrate, and then stretched the substrate. They used a spectroscopy technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

"This tells us a lot about the interface properties of the graphene and substrate," Zhu says. "For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 to 1.6 percent."

The researchers also found that the graphene monolayer buckled when the elastic substrate was returned to its original length. This created ridges in the graphene that made it more stretchable because the material could stretch out and back, like the bellows of an accordion. The technique for creating the buckled material is similar to one developed by Zhu's lab for creating elastic conductors out of carbon nanotubes.


Contact: Matt Shipman
North Carolina State University

Related biology technology :

1. Smaller and more powerful electronics requires the understanding of quantum jamming physics
2. Drexels Gogotsi and team advance understanding of energy storage mechanisms in Nature Materials
3. Scientists gain new understanding of Alzheimers trigger
4. Study improves understanding of surface molecules in controlling size of gold nanoparticles
5. Scientists gain understanding of self-cleaning gecko foot hair
6. "Biological Control Industry Overview: Companies & Products" Edition 2 is Here. Critical information for Understanding the Global Biopesticide/Biocontrol Market
7. Human Research Protection and Understanding the Landscape of AAHRPP Accreditation
8. Genomic Health Announces Results from Two Studies Demonstrating Innovations in Next Generation Sequencing From Paraffin Tissue, Enhancing Understanding of Tumor Biology
9. Kitware to Develop an In Situ Cosmology Analysis Framework for Increased Understanding of the Universe
10. Study led by GW professor provides better understanding of waters freezing behavior at nanoscale
11. Understanding the molecular mechanisms underlying Alzheimers disease
Post Your Comments:
(Date:11/26/2015)... 26, 2015 ... Accutest Research Laboratories, a leading independent ... (CRO), has formed a strategic partnership ... Temple Health for joint work on ... ) , --> ...
(Date:11/26/2015)... , England , November 26, 2015 ... Lightpoint Medical, an innovative medical device company specializing in imaging ... grant from the European Commission as part of the Horizon ... the company to carry out a large-scale clinical trial in ... -->      (Logo: , --> ...
(Date:11/25/2015)... , November 26, 2015 ... Biobanking Market 2016 - 2020 report analyzes that ... integrity and quality in long-term samples, minimizing manual ... cost-effectiveness. Automation minimizes manual errors such as mislabeling ... efficiency. Further, it plays a vital role in ...
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: ... adopted a stockholder rights plan (Rights Plan) in an ... loss carryforwards (NOLs) under Section 382 of the Internal ... --> PharmAthene,s use of its NOLs could be ... as defined in Section 382 of the Code. In ...
Breaking Biology Technology:
(Date:11/19/2015)... , Nov. 19, 2015  Based on its in-depth ... Sullivan recognizes BIO-key with the 2015 Global Frost & ... Frost & Sullivan presents this award to the company ... to the needs of the market it serves. The ... meets and expands on customer base demands, the overall ...
(Date:11/17/2015)... Paris from 17 th until 19 ... from 17 th until 19 th November 2015. ... invented the first combined scanner in the world which scans ... now two different scanners were required: one for passports and ... the same surface. This innovation is an ideal solution for ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):