Navigation Links
Ultra-sensitive force sensing with a levitating nanoparticle
Date:11/25/2013

A recent study led by researchers of the Institute of Photonic Sciences (ICFO) achieved the highest force sensitivity ever observed with a nano-mechanical resonator. The scientific results of this study have been published in Nature Physics.

Nano- and micromechanical oscillators with high quality (Q) factors have gained much attention for their potential application in sensing, signal processing and transduction as well as in fundamental research aiming at observing quantum effects in increasingly larger systems. Despite recent advances in the design and fabrication of mechanical resonators, their Q-factor has so far been limited by coupling to the environment through physical contact to a support. To overcome this limitation, the present work proposes to use optically levitated objects in vacuum that do not suffer from clamping losses.

In this recent ICFO study, scientists have optically levitated nanoparticles in high vacuum conditions and measured the highest Q-factor ever observed in nano- or micromechanical systems. The combination of an ultra-high Q-factor together with the tiny mass of the nanoparticles leads to an unprecedented force sensitivity at room temperature. The system is so sensitive that the weak forces arising from collisions between the nanoparticle and the residual air molecules are enough to drive it into the nonlinear regime. For the first time, this study demonstrates that ultra-high Q-factor nano-resonators intrinsically behave nonlinearly. In addition, the researchers show that, when combined with feedback cooling, the levitating nanoparticle can be used as a force-sensor, sufficiently sensitive to detect ultra-weak interactions, such as non-Newtonian gravity-like forces and tiny forces arising from quantum vacuum fluctuations.

Gieseler remarks that "Thermal motion is commonly observed in nano-mechanical systems. However, observing nonlinear features of thermal motion is a true novelty and, thus, challenges our understanding of how these high-Q nano-mechanical systems behave."

The advent of this new class of nano-mechanical oscillators will open new avenues for ultrasensitive force sensing and benefit the experimental investigation of quantum physics.

This discovery has been possible thanks to the collaboration between the Plasmon Nano-optics group led by ICREA Prof. at ICFO Romain Quidant and the Nano-Photonics group led by Prof. Lukas Novotny, from the Photonics Laboratory (ETH Zurich), as well as the support from the Fundaci Cellex Barcelona through its Nest program.

Ref: Jan Gieseler, Lukas Novotny & Romain Quidant, Thermal nonlinearities in a nanomechanical oscillator, Nature Physics (2013), doi:10.1038/nphys2798


'/>"/>

Contact: Alina Hirschmann
alina.hirschmann@icfo.es
34-935-542-246
ICFO-The Institute of Photonic Sciences
Source:Eurekalert  

Related biology technology :

1. Dr. Ungerleider Joins Forces with Childhelp
2. ClearPath Workforce Management Expert to Present on Contractor Payroll, Engagement and Compliance as Part of Institute for Human Resources Virtual Conference
3. Government Steps Up Awareness for Obstructive Sleep Apnea in America’s Workforce
4. World Leaders in Alternative Cancer Treatment Join Forces
5. Workforce Solutions Company Kaztronix is Recognized for the Second Time on Inc. Magazine's List of the 5000 Fastest-Growing Private Companies in America
6. National labs and Air Force partner to improve aircraft component design
7. Surfacing for Success: Emergent Technologies and KODE Biotech Join Forces to Expand Markets for Platform Technology
8. Kitware Receives Funds from U.S. Air Force Research Lab to Extend the Bender Toolkit for Anatomical Model Repositioning
9. Controlling friction by tuning van der Waals forces
10. Kitware to Improve Air Force Video Analyst Workflows with VIRAT
11. Air Force support for a new generation of lithium-ion batteries
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Ultra-sensitive force sensing with a levitating nanoparticle
(Date:2/11/2016)... Inc. (NASDAQ: NBIX ) today announced its financial results for ... --> --> For the fourth quarter of ... $0.34 loss per share, compared to a net loss of $19.4 ... 2014. For the year ended December 31, 2015, the Company reported ... as compared to a net loss of $60.5 million, or $0.81 ...
(Date:2/11/2016)... International, a not-for-profit organization focused on the ethics and governance ... to patients around the world, today announced that the editors ... the Good Pharma Scorecard an ,Editors, Pick, ... of BMJ Open ,s ,Most Popular Articles, which includes ... read. Ed Sucksmith , assistant editor of ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... information focused on the development and manufacture of biopharmaceuticals and therapeutics, announces ... of the 2016 BioProcess International Awards – Recognizing Excellence in the People, ...
(Date:2/11/2016)... --  BioInformant announces the February 2016 release of ... Tools, and Technologies – Market Size, Segments, Trends, and ... The first and only market research ... has more than a decade of historical information on ... cell type. This powerful 175 page global strategic report ...
Breaking Biology Technology:
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
(Date:1/20/2016)... , Jan. 20, 2016  Synaptics Incorporated ... human interface solutions, today announced sampling of S1423, ... for wearables and small screen applications including smartwatches, ... printers. Supporting round and rectangular shapes, as well ... excellent performance with moisture on screen, while wearing ...
(Date:1/11/2016)... , Jan. 11, 2016 Synaptics Incorporated (NASDAQ: ... solutions, today announced that its ClearPad ® TouchView ... products won two separate categories in the 8 th ... and Best Technology Breakthrough. The Synaptics ® TDDI ... simplified supply chain, thinner devices, brighter displays and borderless ...
Breaking Biology News(10 mins):