Navigation Links
UT Arlington engineers working to prevent heat buildup within 3D integrated circuits
Date:12/19/2012

In the effort to pile more power atop silicon chips, engineers have developed the equivalent of mini-skyscrapers in three-dimensional integrated circuits and encountered a new challenge: how to manage the heat created within the tiny devices.

But a team of UT Arlington researchers funded by the National Science Foundation is working first to minimize the heat generated and then to developing nano-windows that will allow the heat to dissipate before it damages the chip.

Ankur Jain, assistant professor of mechanical and aerospace engineering, is working with colleague Dereje Agonafer, professor of mechanical and aerospace engineering, and Roger Schmidt, IBM fellow and chief engineer, on the project.

"There is only a very limited amount of space available on an integrated circuit so we've had to build vertically, placing wafers on top of wafers," Jain said. "These 3D integrated circuits have led to significant performance improvements. However, when we stack these circuits on top of each other, heat starts to become a problem."

He added: "All the heat being generated in this multi-layer stack needs to be removed, otherwise it causes deterioration in performance."

Agonafer said the team will investigate and measure fundamental thermal transport and thermomechanical properties of materials and interfaces in 3D integrated circuit technology.

The team also will look at Through-Silicon Vias, or TSVs high-performance wires that allow integrated circuits to talk to each other and pass instructions from one level to the next.

Jain and Agonafer believe the cooling effects will boost the efficiency and speed of the 3D integrated circuits as well.

Schmidt said UT Arlington is one of the many academic partners IBM works with to find solutions for tomorrow's computing needs.

"Cooling chips has come a long way in recent years, but the financial savings can be enormous," Schmidt said. "Reducing heat just a little can translate to millions of dollars in savings down the road. Plus, typically solving the heat problem also yields faster, more reliable and more powerful computing."

Jean-Pierre Bardet, dean of the UT Arlington College of Engineering, said the project demonstrates the important role that a research institution can play in partnering with industry leaders, such as IBM.

"Their work will help not only chip manufacturers but any business whose products depend on 3D, integrated circuit technology," Bardet said. "We are pleased to be partnering with a worldwide innovator in research that will improve technology we have all come to depend upon."


'/>"/>

Contact: Herb Booth
hbooth@uta.edu
817-272-7075
University of Texas at Arlington
Source:Eurekalert

Related biology technology :

1. UT Arlington research team wins $1.35 million NSF robotics grant to develop smart skin applications
2. UCLA engineers develop new energy-efficient computer memory using magnetic materials
3. Engineers achieve longstanding goal of stable nanocrystalline metals
4. Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
5. Cloak of invisibility: Engineers use plasmonics to create an invisible photodetector
6. Straintronics: Engineers create piezoelectric graphene
7. Stanford engineers weld nanowires with light
8. Arizona State University engineers aim to improve performance of technology in extreme environments
9. Stanford engineers use nanophotonics to reshape on-chip computer data transmission
10. "Just Label It" condemns dangerous riders snuck into the Farm Bill by chemical companies working to keep Americans in the dark about their food
11. Pittcon 2013 Announces Call for Topics for Conferee Networking Sessions, August 1, 2012 Deadline
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)... ... ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture systems, ... Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The peer ... Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes the ...
(Date:5/23/2017)... ... 2017 , ... Cambridge Semantics , the leading provider of Big Data ... Conference and Expo in Boston May 23-25 with a featured speaker and solution ... Data Lake is also a finalist for the Best of Show award. , James ...
(Date:5/22/2017)... ... May 22, 2017 , ... ... is exhibiting in booth B2 at the Association for Pathology Informatics Annual ... , In addition to demonstrating its Cancer Diagnostic Cockpit and Consultation Portal, Inspirata ...
(Date:5/19/2017)... ... May 19, 2017 , ... The University City ... with technologies ripe for commercialization, and who are affiliated with the 21 partner ... submit proposals. QED, now in its tenth round, is the first multi-institutional proof-of-concept ...
Breaking Biology Technology:
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
(Date:3/30/2017)... March 30, 2017 Trends, opportunities and forecast ... behavioral), by technology (fingerprint, AFIS, iris recognition, facial recognition, ... others), by end use industry (government and law enforcement, ... and banking, and others), and by region ( ... Asia Pacific , and the Rest ...
Breaking Biology News(10 mins):