Navigation Links
USC scientists 'clone' carbon nanotubes to unlock their potential for use in electronics

The heart of the computer industry is known as "Silicon Valley" for a reason. Integrated circuit computer chips have been made from silicon since computing's infancy in the 1960s. Now, thanks to a team of USC researchers, carbon nanotubes may emerge as a contender to silicon's throne.

Scientists and industry experts have long speculated that carbon nanotube transistors would one day replace their silicon predecessors. In 1998, Delft University built the world's first carbon nanotube transistors carbon nanotubes have the potential to be far smaller, faster, and consume less power than silicon transistors.

A key reason carbon nanotubes are not in your computer right now is that they are difficult to manufacture in a predictable way. Scientists have had a difficult time controlling the manufacture of nanotubes to the correct diameter, type and ultimately chirality, factors that control nanotubes' electrical and mechanical properties.

Think of chirality like this: if you took a sheet of notebook paper and rolled it straight up into a tube, it would have a certain chirality. If you rolled that same sheet up at an angle, it would have a different chirality. In this example, the notebook paper represents a sheet of latticed carbon atoms that are rolled-up to create a nanotube.

A team led by Professor Chongwu Zhou of the USC Viterbi School of Engineering and Ming Zheng of the National Institute of Standards and Technology in Maryland solved the problem by inventing a system that consistently produces carbon nanotubes of a predictable diameter and chirality.

Zhou worked with his group members Jia Liu, Chuan Wang, Bilu Liu, Liang Chen, and Ming Zheng and Xiaomin Tu of the National Institute of Standards and Technology in Maryland.

"Controlling the chirality of carbon nanotubes has been a dream for many researchers. Now the dream has come true." said Zhou. The team has already patented its innovation, and its research will be published Nov. 13 in Nature Communications.

Carbon nanotubes are typically grown using a chemical vapor deposition (CVD) system in which a chemical-laced gas is pumped into a chamber containing substrates with metal catalyst nanoparticles, upon which the nanotubes grow. It is generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal nanoparticles. However, attempts to control the catalysts in hopes of achieving chirality-controlled nanotube growth have not been successful.

The USC team's innovation was to jettison the catalyst and instead plant pieces of carbon nanotubes that have been separated and pre-selected based on chirality, using a nanotube separation technique developed and perfected by Zheng and his coworkers at NIST. Using those pieces as seeds, the team used chemical vapor deposition to extend the seeds to get much longer nanotubes, which were shown to have the same chirality as the seeds..

The process is referred to as "nanotube cloning." The next steps in the research will be to carefully study the mechanism of the nanotube growth in this system, to scale up the cloning process to get large quantities of chirality-controlled nanotubes, and to use those nanotubes for electronic applications


Contact: Robert Perkins
University of Southern California

Related biology technology :

1. UC Santa Barbara scientists learn how to unlock the destiny of a cell: A gift for the tin man?
2. Nanotechnology helps scientists keep silver shiny
3. Scientists demonstrate high-efficiency quantum dot solar cells
4. Scientists target bacterial transfer of resistance genes
5. Scientists identify mammal model of bladder regeneration
6. Scientists build mechanically active DNA material
7. GenScript to Synthesize Yeast Genome with Johns Hopkins Scientists
8. Scientists report successful vaccine developed against deadly Nipah virus
9. Worlds smallest semiconductor laser created by University of Texas scientists
10. Scientists read monkeys inner thoughts
11. World record: Scientists from northern Germany produce the lightest material in the world
Post Your Comments:
(Date:10/12/2015)... 12, 2015 VolitionRx Limited (NYSE MKT: ... study of its NuQ ® blood-based test for early ... of Clinical Epigenetics , the official journal of the ... with Lund University, Sweden ... PhD, Professor of Surgery and Vice-Dean, Faculty of Medicine. ...
(Date:10/12/2015)... ... October 12, 2015 , ... NeuMedics Inc., is a specialty biopharmaceutical company focused ... safely and chronically be administered as an eye drop, announced today it has been ... Clinic and taking place October 25th to October 28th at The Cleveland Clinic, Cleveland, ...
(Date:10/11/2015)... (PRWEB) , ... October 11, 2015 , ... ... Revolution™ Spinal System has been officially launched and multiple surgeries have been completed ... Dr. William Hunter of the Neuroscience & Spine Center of the Carolinas. ...
(Date:10/10/2015)... Am 8. Oktober hat die Kongressabgeordnete ... Kalifornien) ihre Würdigung der International Plasma Awareness Week ... des Kongresses eintragen lassen. Die IPAW wird von ... und ihren Mitgliedsunternehmen unterstützt. Ihre Ziele bestehen in: ... Plasmaspenden weltweit , Würdigung des Beitrages von ...
Breaking Biology Technology:
(Date:9/28/2015)... 2015 CLEAR, the leading biometric ... traveler service is coming to Austin-Bergstrom International ... a frictionless experience, serious speed and enhanced ... offers our travelers an expedited security screening ... Jim Smith , Executive Director, Austin-Bergstrom International ...
(Date:9/28/2015)... 2015 According to a new ... Product (Scanner & Others), Application (Access Control & Others), ... & Geography Global - Forecast to 2020", published by MarketsandMarkets, ... 3627.90 Million by 2020, at a CAGR of 23.40% ... market data T ables and 66 ...
(Date:9/24/2015)... NEW YORK , Sept. 24, 2015  EyeLock ... will be showcasing its award winning and latest technology ... Anaheim, California . EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA.   EyeLock,s platform uses video technology to deliver a ...
Breaking Biology News(10 mins):