Navigation Links
UNL team's discovery yields supertough, strong nanofibers
Date:4/24/2013

University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles.

Their findings are featured on the cover of this week's April issue of the American Chemical Society's journal, ACS Nano.

"Whatever is made of composites can benefit from our nanofibers," said the team's leader, Yuris Dzenis, McBroom Professor of Mechanical and Materials Engineering and a member of UNL's Nebraska Center for Materials and Nanoscience.

"Our discovery adds a new material class to the very select current family of materials with demonstrated simultaneously high strength and toughness."

In structural materials, conventional wisdom holds that strength comes at the expense of toughness. Strength refers to a material's ability to carry a load. A material's toughness is the amount of energy needed to break it; so the more a material dents, or deforms in some way, the less likely it is to break. A ceramic plate, for example, can carry dinner to the table, but shatters if dropped, because it lacks toughness. A rubber ball, on the other hand, is easily squished out of shape, but doesn't break because it's tough, not strong. Typically, strength and toughness are mutually exclusive.

Dzenis and colleagues developed an exceptionally thin polyacrilonitrile nanofiber, a type of synthetic polymer related to acrylic, using a technique called electrospinning. The process involves applying high voltage to a polymer solution until a small jet of liquid ejects, resulting in a continuous length of nanofiber.

They discovered that by making the nanofiber thinner than had been done before, it became not only stronger, as was expected, but also tougher.

Dzenis suggested that toughness comes from the nanofibers' low crystallinity. In other words, it has many areas that are structurally unorganized. These amorphous regions allow the molecular chains to slip around more, giving them the ability to absorb more energy.

Most advanced fibers have fewer amorphous regions, so they break relatively easily. In an airplane, which uses many composite materials, an abrupt break could cause a catastrophic crash. To compensate, engineers use more material, which makes airplanes, and other products, heavier.

"If structural materials were tougher, one could make products more lightweight and still be very safe," Dzenis said.

Body armor, such as bulletproof vests, also requires a material that's both strong and tough. "To stop the bullet, you need the material to be able to absorb energy before failure, and that's what our nanofibers will do," he said.


'/>"/>

Contact: Yuris Dzenis
ydzenis@unl.edu
402-472-0713
University of Nebraska-Lincoln
Source:Eurekalert

Related biology technology :

1. American Management Association Teams With Biogen Idec To Create Life Skills Workshops For People Living With Hemophilia
2. NextBio Teams With Emory University and the Aflac Cancer Center to Improve Outcomes for Children with Medulloblastoma
3. ZyGEM Teams With TATAA Biocenter To Distribute Its Innovative Nucleic acid Extraction Kits
4. Narayana Hrudayalaya Hospitals Teams With Ascension Health Alliance to Build Health City at Grand Cayman
5. Charlie Wilson Teams Up With Janssen Biotech to Launch Making Awareness a Priority (M.A.P.)
6. Discovery paves the way for ultra fast high resolution imaging in real time
7. Probiotic Action Announces the Discovery of Four New Foods Claiming to Have Probiotic Benefits
8. ChanTest Announces Their Second User Meeting: Partnerships in Drug Discovery
9. Discovery opens door to efficiently storing and reusing renewable energy
10. Spinifex Receives $1.5m in R&D Tax Incentive for Research Activities Related to the Discovery of Treatments for Pain
11. Elsevier Launches Web-Based Pathway Studio and Adds New Molecular Data from Its Biology Journals to Boost Early Discovery Research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2017)... ... May 24, 2017 , ... Today, the South Davis ... Advanced Biological Nutrient Recovery (ABNRâ„¢) technology at its 4,000,000 gallon per day South ... to sustainably meet current and future nutrient discharge regulations. The ABNR platform, which ...
(Date:5/24/2017)... Ebola resurfaces in the Democratic Republic of Congo ... reported, a new analysis of the Ebola gene polymerase Replikin ... 2014 and 2017 outbreaks of the disease.  ... the 2014 outbreak. An analysis of the latest data showed ... which again precedes the current outbreak in the DRC. Sequence ...
(Date:5/23/2017)... ... 2017 , ... Genedata, a leading provider of advanced software ... a strong presence at Bio-IT World Conference & Expo 2017 in Boston, MA. ... all attendees to view posters on the entire range of Genedata software ...
(Date:5/23/2017)... ... May 23, 2017 , ... Energetiq Technology, ... announced a facility expansion to accommodate its rapid growth. , The renovations at ... and renovation of the existing areas. The expansion includes, a state-of-the-art engineering facility, ...
Breaking Biology Technology:
(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/23/2017)... 2017 The report "Gesture Recognition and Touchless Sensing Market ... - Global Forecast to 2022", published by MarketsandMarkets, the market is expected to ... between 2017 and 2022. Continue Reading ... ... ...
(Date:3/22/2017)... LIVERMORE, Calif. , March 21, 2017 ... recognition analytics company serving law enforcement agencies, announced today ... Sheridan as director of public safety business development. ... of diversified law enforcement experience, including a focus on ... Vigilant. In his most recent position, Mr. Sheridan served ...
Breaking Biology News(10 mins):