Navigation Links
UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes
Date:10/24/2013

AMHERST, Mass. Sharp observation by doctoral student Mengmeng Cui in Thomas Russell's polymer science and engineering laboratory at the University of Massachusetts Amherst recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each.

Russell, her advisor, points out that the advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

He says, "It's very, very neat. We've tricked the system into remaining absolutely fixed, trapped in a certain state for as long as we like. Now we can take a material and encapsulate it in a droplet in an unusual shape for a very long time. Any system where I can have co-continuous materials and I can do things independently in both oil and water is interesting and potentially valuable."

Cui, with Russell and his colleague, synthetic chemist Todd Emrick, report their findings in the current issue of Science.

Russell's lab has long been interested in jamming phenomena and kinetically trapped materials, he says. When Cui noticed something unusual in routine experiments, rather than ignore it and start again she decided to investigate further. "This discovery is really a tribute to Cui's observational skills," Russell notes, "that she recognized this could be of importance."

Specifically, the polymer scientists applied an electric field to a system with two liquids to overcome the weak force that stabilizes nanoparticle assemblies at interfaces. Under the influence of the external field, a spherical drop changes shape to an ellipsoid with increased surface area, so it has many more nanoparticles attached to its surface.

When the external field is released, the higher number of surface nanoparticles jam the liquid system, stopping nanoparticle movement like Friday afternoon gridlock on an exit ramp or sand grains stuck in an hourglass, Russell explains. In its jammed state, the nanoparticle-covered droplet retains its ellipsoid shape and still carries many more nanoparticles on its surface, disordered and liquid-like, than it could as a simple spherical drop. This new shape can be permanently fixed. Cui, Russell and Emrick also accomplished the jamming using a mechanical method, stirring.

By generating these jammed nanoparticle surfactants at interfaces, fluid drops of arbitrary shape and size can be stabilized opening applications in fluidics, encapsulation and bicontinuous media for energy applications. Further stabilization is realized by replacing monofunctional ligands with difunctional ones that cross-link the assemblies, the authors note. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery and storage.


'/>"/>

Contact: Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444
University of Massachusetts at Amherst
Source:Eurekalert

Related biology technology :

1. UMass Amherst polymer scientists, physicists develop new way to shape thin gel sheets
2. UMass Amherst, Harvard experts say better systems needed for medical device cybersecurity
3. Seahorse Bioscience Launches First Product from the Partnership with Baystate Medical Center and UMass Amherst
4. UMass Boston Receives $1 Million Grant to Recruit Urban Nurse Leaders
5. Sanofi Forms Partnership with UMass Boston with $1 Million Support of Student Success Program for STEM Education
6. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
7. Fabrication method can affect the use of block copolymer thin films
8. Bio-inspired polymer synthesis enhances structure control
9. DNA2.0 Patents Key Method for Synthesizing Bioplastic Polymer
10. Plasmonic chains act like polymers
11. New England Biolabs Develops Novel Polymerase with Ultra-High Fidelity and Minimal GC Bias
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/7/2016)... , ... December 07, 2016 , ... ... has concluded that “in the setting of previously treated, advanced pancreatic cancer, liquid ... defining the optimal patient population and timing of blood sampling may improve the ...
(Date:12/7/2016)... -- Neogen Corporation (NASDAQ: NEOG ) announced ... as its chief science officer — a new position ... Neogen effective Jan. 1. Kephart has served ... of Thermo Fisher Scientific, as well as animal health ... industry experience also includes the management of a team ...
(Date:12/7/2016)... - Zenith Capital Corp. ("Zenith" or the "Company") announces webcast details ... Company,s Annual and Special Meeting. The Zenith ... Thursday, December 15, 2016 at Mount Royal ... Mount Royal Gate SW, Calgary, Alberta , ... management information circular, containing the matters to be considered at ...
(Date:12/7/2016)... , Dec. 7, 2016  Biocom, the association for the ... statement below following passage of 21 st Century Cures ... November 30 by a 392-26 vote and in the Senate ... be attributed to Joe Panetta , president & CEO ... will give hope to millions of patients around the world. ...
Breaking Biology Technology:
(Date:12/6/2016)... , Dec. 6, 2016  Zimmer Biomet Holdings, Inc. ... has priced an offering of €500.0 million principal amount of ... principal amount of its 2.425% senior unsecured notes due 2026. ... to occur on December 13, 2016, subject to the satisfaction of ... annual basis. The Company intends ...
(Date:12/6/2016)... 2016 Securus Technologies, a leading provider ... public safety, investigation, corrections and monitoring, and the ... five (5) year funding commitment by Securus to ... rehabilitation and reentry support to more inmates and ... 2004, the Prison Entrepreneurship Program (PEP) is an ...
(Date:12/2/2016)... , December 1, 2016 ... type (Fingerprint, Voice), Future Technology (Iris Recognition System), ... Region - Global Forecast to 2021", published by ... 442.7 Million in 2016, and is projected to ... a CAGR of 14.06%.      (Logo: ...
Breaking Biology News(10 mins):