Navigation Links
UCSB researchers identify the mechanisms underlying salt-mediated behaviors in fruit flies
Date:6/14/2013

(Santa Barbara, Calif.) Next time you see a fruit fly in your kitchen, don't swat it. That fly could have a major impact on our progress in deciphering sensory biology and animal behavior, including someday providing a better understanding of the human brain.

UC Santa Barbara researchers in the Department of Molecular, Cellular, and Developmental Biology (MCDB) and the Neuroscience Research Institute (NRI) have been studying the mechanisms underlying salt taste coding of Drosophila (fruit flies). And they have made some rather remarkable discoveries. Their findings appear today in the journal Science.

The work done by Craig Montell, Duggan Professor of MCDB and Neuroscience, and his team not only explains the fundamental question of how an animal chooses low salt over high salt, but also unravels the mechanism for how gustatory receptor neurons (GRNs) are activated by salt, an essential nutrient for all animals, including humans.

The fact that animals are attracted to low-salt foods and reject food with high salt is well known. However, it remains unclear how low-salt and high-salt taste perceptions are differentially encoded in gustatory receptor cells, and how they induce distinct behavioral responses. The researchers' findings solve this mystery.

Fruit flies use two distinct types of salt GRNs to respond to different concentrations of salt. One type is activated maximally by low salt and induces attractive feeding behavior. The other class, activated primarily by high salt, leads to aversive feeding behavior. Montell and his colleagues found that these two types of neurons compete with each other to regulate the animal's behavioral outputs. The net outcome of the salt behavioral response is determined by the relative strength of salt-attractive GRNs and salt-aversive GRNs. The identification of the mechanism underlying the coding of salt taste in GRNs represents a conceptual breakthrough.

"Ultimately, what we want to understand is behavior, which depends on sensory input and an animal's genetic makeup," said Montell. "Once you have this information and the neuronal wiring, you can predict the behavior of a population of animals.

By focusing on behavior and perception in fruit flies, it may be just a few years before we have a rather impressive understanding about how sensory perceptions translate into behavior. That's why there's so much attention paid to model organisms like flies."

The paper also demonstrates that a member of the newly discovered ionotropic receptor (IR) family, IR76b, is required for low-salt sensation. Moreover, IR76b codes for a previously unrecognized class of GRNs separate from those that respond to sweet or bitter foods. Loss of IR76b selectively impaired the attractive low-salt pathway, causing low salt to become aversive to the mutant animals.

"The demonstration that IR76b is a Na+ leak channel suggests an unusual mechanism for activating a sensory neuron," said Montell. "We describe a mechanism for neuronal depolarization that is mediated by a change in the concentration of an extracellular ion (Na+), rather than activation of a receptor or ion channel by a specific agonist, leading to opening of a channel gate."

These findings provide compelling genetic evidence supporting the concept that the opposing behavioral responses to low and high salt are determined largely by competition between two newly identified types of salt-responsive GRNs.

"Not only does this comment on how salt perception may occur in many animals throughout the animal kingdom," Montell said, "but if we can fully understand how aversive and attractive sensory signals work in fruit flies, there may be future potential for controlling insect pests. Fruit flies provide a model for insects that spread disease, so one day we may be able to use thermosensory and chemosensory receptors to provide new strategies to control such pests."


'/>"/>

Contact: George Foulsham
george.foulsham@ia.ucsb.edu
805-893-3071
University of California - Santa Barbara
Source:Eurekalert

Related biology technology :

1. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
2. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
3. Multidisciplinary team of researchers develop world’s lightest material
4. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
5. Innovative MetaMorph® NX Software Shatters Barriers Between Researchers and Image Analysis Goals with Exclusive Visual Workflow
6. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
7. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
8. Two Top Biological Imaging Centers Offer Powerful Free Online Tool to Researchers, Educators, and Public
9. Researchers develop one of the worlds smallest electronic circuits
10. MU researchers identify key plant immune response in fight against bacteria
11. Researchers realize high-power, narrowband terahertz source at room temperature
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... 24, 2017   Sienna Biopharmaceuticals, Inc. , a ... announced that Richard Peterson will join the ... Peterson, who brings more than two decades of ... who is retiring at the end of April but ... Peterson joins Sienna from Novan, Inc., where he served ...
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed president, Jake Lubinski, describes ... characteristics when deformed, which is identical to how the human discs work to ... and return to its natural state along a hysteresis curve, exactly like a ...
(Date:3/23/2017)... , Mar 23, 2017 Research and ... Global Markets" report to their offering. ... The Global Market ... Billion in 2016 at a CAGR of 8.9%, ... and non-energetic bioproducts into seven major product segments: bio-derived chemicals, ...
(Date:3/23/2017)... Mass. , March 23, 2017 /PRNewswire/ ... partner to global in vitro diagnostics manufacturers ... of the industry,s first multiplexed Inherited ... disease testing by next-generation sequencing (NGS). The ... were developed with input from industry experts ...
Breaking Biology Technology:
(Date:3/7/2017)...   HireVue , the leading provider of video ... best talent, faster, today announced the additions of ... Diana Kucer as Chief Marketing Officer (CMO). ... poised to drive continued growth in the company,s new ... record bookings in 2017. "Companies worldwide turn ...
(Date:3/2/2017)... YORK , March 2, 2017 Summary ... better understand Perrigo and its partnering interests and activities since ... ... Partnering Deals and Alliance since 2010 report provides an in-depth ... leading life sciences companies. On demand company reports ...
(Date:3/2/2017)... , March 2, 2017 Who risk ... lawsuits? Download the full report: https://www.reportbuyer.com/product/4313699/ ... THE FINGERPRINT SENSOR FIELD? Fingerprint sensors using capacitive ... The fingerprint sensor vendor Idex forecasts an increase of ... mobile devices and of the fingerprint sensor market between ...
Breaking Biology News(10 mins):