Navigation Links
UCSB researchers demonstrate that 15=3x5 about half of the time
Date:8/19/2012

(Santa Barbara, Calif.) Computing prime factors may sound like an elementary math problem, but try it with a large number, say one that contains more than 600 digits, and the task becomes enormously challenging and impossibly time-consuming. Now, a group of researchers at UC Santa Barbara has designed and fabricated a quantum processor capable of factoring a composite number in this case the number 15 into its constituent prime factors, 3 and 5.

Although modest compared to a 600-digit number, the achievement represents a milestone on the road map to building a quantum computer capable of factoring much larger numbers, with significant implications for cryptography and cybersecurity. The results are published in the advance online issue of the journal Nature Physics.

"Fifteen is a small number, but what's important is we've shown that we can run a version of Peter Shor's prime factoring algorithm on a solid state quantum processor. This is really exciting and has never been done before," said Erik Lucero, the paper's lead author. Now a postdoctoral researcher in experimental quantum computing at IBM, Lucero was a doctoral student in physics at UCSB when the research was conducted and the paper was written.

"What is important is that the concepts used in factoring this small number remain the same when factoring much larger numbers," said Andrew Cleland, a professor of physics at UCSB and a collaborator on the experiment. "We just need to scale up the size of this processor to something much larger. This won't be easy, but the path forward is clear."

Practical applications motivated the research, according to Lucero, who explained that factoring very large numbers is at the heart of cybersecurity protocols, such as the most common form of encoding, known as RSA encryption. "Anytime you send a secure transmission like your credit card information you are relying on security that is based on the fact that it's really hard to find the prime factors of large numbers," he said. Using a classical computer and the best-known classical algorithm, factoring something like RSA Laboratory's largest published number which contains over 600 decimal digits would take longer than the age of the universe, he continued.

A quantum computer could reduce this wait time to a few tens of minutes. "A quantum computer can solve this problem faster than a classical computer by about 15 orders of magnitude," said Lucero. "This has widespread effect. A quantum computer will be a game changer in a lot of ways, and certainly with respect to computer security."

So, if quantum computing makes RSA encryption no longer secure, what will replace it? The answer, Lucero said, is quantum cryptography. "It's not only harder to break, but it allows you to know if someone has been eavesdropping, or listening in on your transmission. Imagine someone wiretapping your phone, but now, every time that person tries to listen in on your conversation, the audio gets jumbled. With quantum cryptography, if someone tries to extract information, it changes the system, and both the transmitter and the receiver are aware of it."

To conduct the research, Lucero and his colleagues designed and fabricated a quantum processor to map the problem of factoring the number 15 onto a purpose-built superconducting quantum circuit. "We chose the number 15 because it is the smallest composite number that satisfies the conditions appropriate to test Shor's algorithm it is a product of two prime numbers, and it's not even," he explained.

The quantum processor was implemented using a quantum circuit composed of four superconducting phase qubits the quantum equivalents of transistors and five microwave resonators. The complexity of operating these nine quantum elements required building a control system that allows for precise operation and a significant degree of automation a prototype that will facilitate scaling up to larger and more complex circuits. The research represents a significant step toward a scalable quantum architecture while meeting a benchmark for quantum computation, as well as having historical relevance for quantum information and cryptography.

"After repeating the experiment 150,000 times, we showed that our quantum processor got the right answer just under half the time" Lucero said. "The best we can expect from Shor's algorithm is to get the right answer exactly 50 percent of the time, so our results were essentially what we'd expect theoretically."

The next step, according to Lucero, is to increase the quantum coherence times and go from nine quantum elements to hundreds, then thousands, and on to millions. "Now that we know 15=3x5, we can start thinking about how to factor larger dare I say more practical numbers," he said.


'/>"/>

Contact: Andrea Estrada
andrea.estrada@ia.ucsb.edu
805-893-4620
University of California - Santa Barbara
Source:Eurekalert  

Related biology technology :

1. Researchers peek at the early evolution of sex chromosomes
2. SRI International Researchers Developing Bioadhesive Gel to Protect Women from HIV and HSV Infections
3. Researchers create highly conductive and elastic conductors using silver nanowires
4. Researchers create rubber-band electronics
5. Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool
6. Penn researchers study of phase change materials could lead to better computer memory
7. Researchers tune the strain in graphene drumheads to create quantum dots
8. WHEATON® Introduces a New Web Community for Scientists, Researchers, and Biopharmaceutical Packagers
9. Stevenage Bioscience Catalyst to Welcome Cambridge University Researchers
10. Syracuse University researchers use nanotechnology to harness power of fireflies
11. Researchers discover hereditary enzyme deficiency
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCSB researchers demonstrate that 15=3x5 about half of the time
(Date:1/17/2017)... The Global Implantable Biomaterials Market is ... 7.5% over the next decade to reach approximately ... trends that the market is witnessing include increasing ... transplant surgeries and medical implants and technological advancements. ... into immunomodulatory biomaterials, natural, polymers, hydrogels and ceramics. ...
(Date:1/17/2017)... Ind. , Jan. 17, 2017  Zimmer Biomet ... fourth quarter and full-year 2016 sales and earnings conference ... Tuesday, January 31, 2017, at 8 a.m. Eastern Time.  ... will be made available at 7:30 a.m. Eastern Time ... live audio webcast can be accessed via Zimmer Biomet,s ...
(Date:1/17/2017)... Research and Markets has announced the addition of ... and Companies" to their offering. ... The number of companies ... few years. More than 1,000 companies have been identified to ... are profiled in the report along with tabulation of 811 ...
(Date:1/17/2017)... ... January 17, 2017 , ... ... of the North American Spine Society (NASS)1 demonstrate high fusion rates at ... cases, when PEEK-OPTIMA™ HA Enhanced is used for interbody-fusion devices. The implantable ...
Breaking Biology Technology:
(Date:12/20/2016)... 2016   Valencell , the leading innovator ... STMicroelectronics (NYSE: STM), a global semiconductor leader serving ... today the launch of a new, highly accurate ... includes ST,s compact SensorTile turnkey multi-sensor ... sensor system. Together, SensorTile and Benchmark deliver the ...
(Date:12/16/2016)... MIAMI , Dec. 16, 2016   ... intuitive Identity management products and solutions and a ... announced today that it is offering seamless, integrated ... Edam security entrance products. The solutions provide IdentyTech,s ... to secure their facilities from crime and theft. ...
(Date:12/16/2016)... 2016 The global wearable medical device market, in terms ... from USD 5.31 billion in 2016, at a CAGR of 18.0% ... ... advancements in medical devices, launch of a growing number of smartphone-based ... among healthcare providers, and increasing focus on physical fitness. ...
Breaking Biology News(10 mins):