Navigation Links
UCSB physicists identify room temperature quantum bits in widely used semiconductor
Date:11/2/2011

Santa Barbara, Calif. A discovery by physicists at UC Santa Barbara may earn silicon carbide a semiconductor commonly used by the electronics industry a role at the center of a new generation of information technologies designed to exploit quantum physics for tasks such as ultrafast computing and nanoscale sensing.

The research team discovered that silicon carbide contains crystal imperfections that can be controlled at a quantum mechanical level. The finding is published this week in the journal Nature.

The research group of David Awschalom, senior author, made the finding. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke Director of the California NanoSystems Institute.

In conventional semiconductor-based electronic devices, crystal defects are often deemed undesirable because of their tendency to immobilize electrons by "trapping" them at a particular crystal location. However, the UCSB team discovered that electrons that become trapped by certain imperfections in silicon carbide do so in a way that allows their quantum states to be initialized, precisely manipulated, and measured using a combination of light and microwave radiation. This means that each of these defects meets the requirements for use as a quantum bit, or "qubit," which is often described as the quantum mechanical analog of a transistor, since it is the basic unit of a quantum computer.

"We are looking for the beauty and utility in imperfection, rather than struggling to bring about perfect order," said Awschalom, "and to use these defects as the basis for a future quantum technology."

Most crystal imperfections do not possess these properties, which are intimately tied to the atomic structure of a defect and the electronic characteristics of its semiconductor host, explained Awschalom. In fact, before this research, the only system known to possess these same characteristics was a flaw in diamond known as the nitrogen-vacancy center.

The diamond nitrogen-vacancy center is renowned for its ability to function as a qubit at room temperature, while many other quantum states of matter require an extremely cold temperature, near absolute zero. However, this center exists in a material that is difficult to grow and challenging to manufacture into integrated circuits.

In contrast, high-quality crystals of silicon carbide, multiple inches in diameter, are commonly produced for commercial purposes. They can be readily fashioned into a multitude of intricate electronic, optoelectronic, and electromechanical devices. In addition, the defects studied by Awschalom and his group are addressed using infrared light that is close in energy to the light used widely throughout modern telecommunications networks. And while several distinct defect types were studied at a range of temperatures, two of them were capable of room temperature operation, just like the diamond nitrogen-vacancy center.

The combination of these features makes silicon carbide, with its defects, an attractive candidate for future work seeking to integrate quantum mechanical objects with sophisticated electronic and optical circuitry, according to the researchers. This research fits within a wider effort at UCSB to engineer quantum devices by fostering collaboration between the fields of materials science and quantum physics.

While defects in silicon carbide may offer many technologically attractive qualities, an immense number of defects in other semiconductors are still left to be explored.

"Our dream is to make quantum mechanics fully engineerable," said William Koehl, lead author and a graduate student in the Awschalom lab. "Much like a civil engineer is able to design a bridge based on factors such as load capacity and length span, we'd like to see a day when there are quantum engineers who can design a quantum electronic device based on specifications such as degree of quantum entanglement and quality of interaction with the surrounding environment."


'/>"/>
Contact: Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related biology technology :

1. McGill physicists find a new state of matter in a transistor
2. U of T physicists squeeze light to quantum limit
3. Physicists discover important step for making light crystals
4. Nanophysicists find unexpected magnetic effect
5. NYU physicists find way to explore microscopic systems through holographic video
6. Physicists at UC Santa Barbara make discovery in quantum mechanics
7. U-M physicists create first atomic-scale map of quantum dots
8. Physicists capture first images of atomic spin
9. UBC, Max Planck formalize partnership among worlds top quantum physicists
10. UC Riverside physicists pave the way for graphene-based spin computer
11. Rice physicists discover ultrasensitive microwave detector
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCSB physicists identify room temperature quantum bits in widely used semiconductor
(Date:6/26/2017)... ... June 26, 2017 , ... Third Wave Bioactives, LLC announces the addition ... on leading new business development and ensuring quality customer experience. , Brett ... ingredient industry in technical, marketing and sales roles. “Brett’s background working with customers and ...
(Date:6/23/2017)... , ... June 23, 2017 , ... Ken Hanson, a ... of Physik Instrumente USA, have been selected as this year’s recipients of two top ... two have been invited along with other honorees to accept their awards at a ...
(Date:6/22/2017)... ... June 21, 2017 , ... Building on the success of the inaugural RAADfest ... the very latest developments in radical life extension. RAADfest combines cutting edge science presented ... empowerment of personal development, making it the largest most comprehensive and inclusive super longevity ...
(Date:6/22/2017)... ... ... The first human cell line HeLa, established in 1951, has entered cell ... human cell lines with HeLa cells were published. Until recently, cross-contamination and misidentification of ... associated with dramatic consequences for research. , In this educational webinar, which is ...
Breaking Biology Technology:
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
Breaking Biology News(10 mins):