Navigation Links
UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics

RIVERSIDE, Calif. Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Its one-atom thickness, planar geometry, high current-carrying capacity and thermal conductivity make it ideally suited for further miniaturizing electronics through ultra-small devices and components for semiconductor circuits and computers.

But one of graphene's intrinsic features is ripples, similar to those seen on plastic wrap tightly pulled over a clamped edge. Induced by pre-existing strains in graphene, these ripples can strongly affect graphene's electronic properties, and not always favorably.

If the ripples can be controlled, however, they can be used to advantage in nanoscale devices and electronics, opening up a new arena in graphene engineering: strain-based devices.

UC Riverside's Chun Ning (Jeanie) Lau and colleagues now report the first direct observation and controlled creation of one- and two-dimensional ripples in graphene sheets. Using simple thermal manipulation, the researchers produced the ripples, and controlled their orientation, wavelength and amplitude.

"When the graphene sheets are stretched across a pair of parallel trenches, they spontaneously form nearly periodic ripples," Lau explained. "When these sheets are heated up, they actually contract, so the ripples disappear. When they are cooled down to room temperature, the ripples re-appear, with ridges at right angle to the edges of the trenches. This phenomenon is similar to what happens to a piece of thin plastic wrap that covers a container and heated in a microwave oven."

The unusual thermal contraction of graphene had been predicted theoretically, but Lau's lab is the first to demonstrate and quantify the phenomenon experimentally.

Study results appear July 26 in the advance online publication of Nature Nanotechnology.

Because graphene is both an excellent conductor and the thinnest elastic membrane, the ripples could have profound implications for graphene-based electronics.

"This is because graphene's ability to conduct electricity is expected to vary with the local shape of the membrane," Lau said. "For instance, the ripples may produce effective magnetic fields that can be used to steer and manipulate electrons in a nanoscale device without an external magnet."

Lau, an associate professor of physics and a member of UCR's Center for Nanoscale Science and Engineering, and her colleagues examined the ripples' morphology using a scanning electron microscope and an atomic force microscope. They found that almost all the graphene membranes underwent dramatic morphological changes when heated, displaying significant alterations in the ripple geometry, a buckling of the graphene membrane, or both.

Their experimental system, which involved a stage inside a scanning electron microscope (SEM) with a built-in heater, thermometer and several electrical feed-throughs, enabled them to image graphene while it was being heated and explore the interplay between graphene's mechanical, thermal and electrical properties.

"Our result has important implications for controlling thermally induced stress in graphene electronics," Lau said. "Our ability to control and manipulate the ripples in graphene sheets represents the first step towards strain-based graphene engineering. We show that suspended graphene is almost invariably rippled, and this may need to be considered in the interpretation of a broad array of existing and future research."

Proposed to supplement or replace silicon as the main electronic material, graphene is a single layer of graphite. Even though graphite has been studied for decades, the single sheet first was isolated experimentally only in 2004. Graphene's structure is a two-dimensional honeycomb lattice of carbon atoms. Structurally, it is related to carbon nanotubes (tiny hollow tubes formed by rolling up sheets of graphene) and buckyballs (hollow carbon molecules that form a closed cage).


Contact: Iqbal Pittalwala
University of California - Riverside

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
Related Image:
UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), ... MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing ... AMA members have embraced this type of racing and several new model aviation pilots ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies would like ... to Deloitte's 2015 Technology Fast 500 list of the fastest growing companies in ... Class II medical device that speeds up orthodontic tooth movement by as much ...
(Date:11/24/2015)... INCLINE VILLAGE, Nev. , Nov. 24, 2015  PDL ... John P. McLaughlin , the company,s president and chief ... Piper Jaffray Healthcare Conference next week in New ... and will occur on Tuesday, December 1, 2015 at 9:30 ... and Presentations." Please connect to the website at least 15 ...
Breaking Biology Technology:
(Date:10/26/2015)... and LAS VEGAS , ... Nok Labs , an innovator in modern authentication and ... today announced the launch of its latest version of ... platform enabling organizations to use standards-based authentication that supports ... Nok S3 Authentication Suite is ideal for organizations deploying ...
(Date:10/23/2015)... California , October 23, 2015 ... (SMI) announce a mobile plug and play integration of ... real-world tasks SensoMotoric Instruments (SMI) present ... wearable solutions for eye tracking and physiological data registration. ... SMI Eye Tracking Glasses 2w and physiological ...
(Date:10/22/2015)... 2015 About fingerprint biometrics ... individual with the database to identify and verify an ... loop. Pattern-based algorithms are used to match an individual,s ... was introduced in 1986, which is being used by ... criminal. Technavio,s analysts forecast the global fingerprint ...
Breaking Biology News(10 mins):