Navigation Links
UCLA scientists unlock mystery of how 'handedness' arises
Date:5/11/2012

The overwhelming majority of proteins and other functional molecules in our bodies display a striking molecular characteristic: They can exist in two distinct forms that are mirror images of each other, like your right hand and left hand. Surprisingly, each of our bodies prefers only one of these molecular forms.

This mirror-image phenomenon known as chirality or "handedness" has captured the imagination of a UCLA research group led by Thomas G. Mason, a professor of chemistry and physics and a member of the California NanoSystems Institute at UCLA.

Mason has been exploring how and why chirality arises, and his newest findings on the physical origins of the phenomenon were published May 1 in the journal Nature Communications.

"Objects like our hands are chiral, while objects like regular triangles are achiral, meaning they don't have a handedness to them," said Mason, the senior author of the study. "Achiral objects can be easily superimposed on top of one another."

Why many of the important functional molecules in our bodies almost always occur in just one chiral form when they could potentially exist in either is a mystery that has confounded researchers for years.

"Our bodies contain important molecules like proteins that overwhelmingly have one type of chirality," Mason said. "The other chiral form is essentially not found. I find that fascinating. We asked, 'Could this biological preference of a particular chirality possibly have a physical origin?'"

In addressing this question, Mason and his team sought to discover how chirality occurs in the first place. Their findings offer new insights into how the phenomenon can arise spontaneously, even with achiral building-blocks.

Mason and his colleagues used a manufacturing technique called lithography, which is the basis for making computer chips, to make millions of microscale particles in the shape of achiral triangles. In the past, Mason has used this technique to "print" particles in a wide variety of shapes, and even in the form of letters of the alphabet.

Using optical microscopy, the researchers then studied very dense systems of these lithographic triangular particles. To their surprise, they discovered that the achiral triangles spontaneously arranged themselves to form two-triangle "super-structures," with each super-structure exhibiting a particular chirality.

In the image that accompanies this article, the colored outlines in the field of triangles indicate chiral super-structures having particular orientations.

So what is causing this phenomenon to occur? Entropy, says Mason. His group has shown for the first time that chiral structures can originate from physical entropic forces acting on uniform achiral particles.

"It's quite bizarre," Mason said. "You're starting with achiral components triangles which undergo Brownian motion and you end up with the spontaneous formation of super-structures that have a handedness or chirality. I would never have anticipated that in a million years."

Entropy is usually thought of as a disordering force, but that doesn't capture its subtler aspects. In this case, when the triangular particles are diffusing and interacting at very high densities on a flat surface, each particle can actually maximize its "wiggle room" by becoming partially ordered into a liquid crystal (a phase of matter between a liquid and a solid) made out of chiral super-structures of triangles.

"We discovered that just two physical ingredients entropy and particle shape are enough to cause chirality to appear spontaneously in dense systems," Mason said. "In my 25 years of doing research, I never thought that I would see chirality occur in a system of achiral objects driven by entropic forces."

As for the future of this research, "We are very interested to see what happens with other shapes and if we can eventually control the chiral formations that we see occurring here spontaneously," he said.

"To me, it's intriguing, because I think about the chiral preference in biology," Mason added. "How did this chiral preference happen? What are the minimum ingredients for that to occur? We're learning some new physical rules, but the story in biology is far from complete. We have added another chapter to the story, and I'm amazed by these findings."

To learn more, a message board accompanies the publication in Nature Communications, an online journal, as a forum for interactive discussion.

This research was funded by the University of California. Kun Zhao, a postdoctoral researcher in Mason's laboratory, made many key contributions, including fabricating the triangle particles, creating the two-dimensional system of particles, performing the optical microscopy experiments, carrying out extensive particle-tracking analysis and interpreting the results.

Along with Mason, co-author Robijn Bruinsma, a UCLA professor of theoretical physics and a member of the California NanoSystems Institute at UCLA, contributed to the understanding of the chiral symmetry breaking and the liquid crystal phases.


'/>"/>

Contact: Stuart Wolpert
swolpert@support.ucla.edu
310-206-0511
University of California - Los Angeles
Source:Eurekalert  

Related biology technology :

1. NTU scientists invent superbug killers
2. Scientists gain new understanding of Alzheimers trigger
3. Scientists develop new technique that could improve heart attack prediction
4. Leading Scientists to Debate Views on Rejuvenation Biotechnologies
5. UCF scientists use nanotechnology to hunt for hidden pathogens
6. Scientists develop tools to make more complex biological machines from yeast
7. UMass Amherst polymer scientists, physicists develop new way to shape thin gel sheets
8. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
9. Design eye for the science guy: Drop-in clinic helps scientists communicate data
10. Scientists learn how to out run damage with imaging technique
11. Receptos Scientists Publish Determination of a High Resolution Sphingosine 1-Phosphate Receptor 1 Structure in Science
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCLA scientists unlock mystery of how 'handedness' arises
(Date:1/17/2017)...   Pulmatrix, Inc . (NASDAQ: PULM ... therapies to address serious pulmonary diseases, today announced that ... lungs of CF patients, PUR1900, has been designated as ... Food & Drug Administration. Under the ... development of novel drugs against important pathogens, Pulmatrix will ...
(Date:1/17/2017)...  Only nine percent of U.S. consumers believe pharmaceutical ... 16 percent believe health insurance companies do, according to ... of U.S. adults believe health care providers (such as ... hospitals (23%). "We are in the midst ... , vice president of reputation management and public affairs ...
(Date:1/17/2017)... ... , ... Pono Ola , a mind-body wellness firm on a mission ... launch of its much-anticipated Pono Board: a re-invented fitness and anti-fatigue balance board that ... a year, the patented Pono Board is the world’s only exercise balance board built ...
(Date:1/17/2017)... ... January 17, 2017 , ... Diagenode, a ... announced a collaboration with the Heidelberg University Hospital and the German Cancer Research ... following the company’s successful launch of its CATS (Capture and Amplification by ...
Breaking Biology Technology:
(Date:12/15/2016)... , Dec. 15, 2016 Advancements ... experience, health wellness and wellbeing (HWW), and ... in three new passenger vehicles begin to ... gesture recognition, heart beat monitoring, brain wave ... facial monitoring, and pulse detection. These will ...
(Date:12/12/2016)... -- Researchers at Trinity College, Dublin, are opening up ... material with Silly Putty. The mixture (known as "G-putty") ... sense pulse, blood pressure, respiration, and even the ... The research team,s findings were published Thursday in ... Due ...
(Date:12/7/2016)... According to a new market research report "Emotion Detection ... Voice Recognition), Service, Application Area, End User, And Region - Global Forecast to ... 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a Compound ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):