Navigation Links
UCLA-led research team develops world's most powerful nanoscale microwave oscillators
Date:6/26/2012

A team of UCLA researchers has created the most powerful high-performance nanoscale microwave oscillators in the world, a development that could lead to cheaper, more energy-efficient mobile communication devices that deliver much better signal quality.

Today's cell phones, WiFienabled tablets and other electronic gadgets all use microwave oscillators, tiny devices that generate the electrical signals used in communications. In a cell phone, for example, the transmitter and receiver circuits contain oscillators that produce radio-frequency signals, which are then converted by the phone's antenna into incoming and outgoing electromagnetic waves.

Current oscillators are silicon-based and use the charge of an electron to create microwaves. The UCLA-developed oscillators, however, utilize the spin of an electron, as in the case of magnetism, and carry several orders-of-magnitude advantages over the oscillators commonly in use today.

UCLA's electron spinbased oscillators grew out of research at the UCLA Henry Samueli School of Engineering and Applied Science sponsored by the Defense Advanced Research Projects Agency (DARPA). This research focused on STT-RAM, or spin-transfer torque magnetoresistive random access memory, which has great potential over other types of memory in terms of both speed and power efficiency.

"We realized that the layered nanoscale structures that make STT-RAM such a great candidate for memory could also be developed for microwave oscillators for communications," said principal investigator and research co-author Kang L. Wang, UCLA Engineering's Raytheon Professor of Electrical Engineering and director of the Western Institute for Nanoelectronics (WIN).

The structures, called spin-transfer nano-oscillators, or STNOs, are composed of two distinct magnetic layers. One layer has a fixed magnetic polar direction, while the other layer's magnetic direction can be manipulated to gyrate by passing an electric current through it. This allows the structure to produce very precise oscillating microwaves.

"Previously, there had been no demonstration of a spin-transfer oscillator with sufficiently high output power and simultaneously good signal quality, which are the two main metrics of an oscillator hence preventing practical applications," said co-author Pedram Khalili, project manager for the UCLADARPA research programs in STT-RAM and non-volatile logic. "We have realized both these requirements in a single structure."

The SNTO was tested to show a record-high output power of close to 1 micro-watt, with a record narrow signal linewidth of 25 megahertz. Output power refers to the strength of the signal, and 1 micro-watt is the desired level for STNOs to be practical for applications. Also, a narrow signal linewidth corresponds to a higher quality signal at a given frequency. This means less noise and interference, for a cleaner voice and video signal. It also means more users can be accommodated onto a given frequency band.

In addition, the new nanoscale system is about 10,000-times smaller than the silicon-based oscillators used today. The nano-oscillators can easily be incorporated into existing integrated circuits (computer chips), as they are compatible with current design and manufacturing standards in the computer and electronic device industries. And the oscillators can be used in both analog (voice) and digital (data) communications, which means smart phones could take full advantage of them.

"For the past decade, we have been working to realize a new paradigm in nanoelectronics and nanoarchitectures," said Wang, who is also a member of the California NanoSystems Institute at UCLA. "This has led to tremendous progress in memory research. And along those same lines, we believe these new STNOs are excellent candidates to succeed today's oscillators."

The paper, "High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy," has been published online in the journal ACS Nano.

Other key authors include Hongwen Jiang, UCLA professor of physics and astronomy, and lead author Zhongming Zeng, formerly a postdoctoral scholar in Jiang's laboratory and currently a professor at the Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences.


'/>"/>

Contact: Matthew Chin
mchin@support.ucla.edu
310-206-0680
University of California - Los Angeles
Source:Eurekalert

Related biology technology :

1. Wolters Kluwer Research Now Available via Bloomberg Tradebook
2. ACORN Research, LLC Announces Partnership with AdeptBio, LLC
3. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
4. Researching graphene nanoelectronics for a post-silicon world
5. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
6. BBVA Foundation Unites the Efforts of Massachusetts General Hospital and Barcelonas Vall dHebron Hospital in Biomarker Research for Personalized Cancer Therapies
7. New research points to benefits of innovative cobas® HPV test for primary screening as Englands cervical cancer screening programme includes the test in current HPV "triage" rollout
8. Multidisciplinary team of researchers develop world’s lightest material
9. K computer research results awarded ACM Gordon Bell Prize
10. ResearchMoz: Ophthalmic Devices Market to 2017 - Glaucoma and Cataract Surgery Devices, Minimally Invasive Procedures in Ophthalmic Surgery to Drive the Ophthalmic Surgery Market
11. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/2/2016)... ... May 02, 2016 , ... F.E.E.D. Co., the Feline ... their revolutionary, veterinarian-designed product for indoor cats. The NoBowl Feeding System replaces the ... food the way nature intended. NoBowls make cats happy and healthy. , Since ...
(Date:4/29/2016)... ... April 29, 2016 , ... ... to transform technology into a viable company, CereScan’s CEO, John Kelley, joined other ... a recognized leader and mentor in the Denver area business community, shared his ...
(Date:4/28/2016)... YORK , April 28, 2016 ... acceleration company reports the Company,s CEO  was featured ... titled Accelerators Enter When VCs Fear To Tread: ... Science Leader magazine is an essential ... for everything from emerging biotechs to Big Pharmas. ...
(Date:4/27/2016)... Boston (PRWEB) , ... April 27, 2016 , ... ... driven by semantic web technology, today announced that it has been named to The ... life sciences, financial services and other markets, Cambridge Semantics serves the needs of end ...
Breaking Biology Technology:
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/23/2016)... , March 23, 2016 ... erhöhter Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender ... das Unternehmen mit SpeechPro zusammenarbeitet, um erstmals ... Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im Rahmen ...
(Date:3/17/2016)... , March 17, 2016 ABI ... intelligence, forecasts the global biometrics market will reach ... impressive 118% increase from 2015. Consumer electronics, particularly ... embedded fingerprint sensors anticipated to reach two billion ... Dimitrios Pavlakis , Research Analyst at ...
Breaking Biology News(10 mins):