Navigation Links
UCLA-led research team develops world's most powerful nanoscale microwave oscillators
Date:6/26/2012

A team of UCLA researchers has created the most powerful high-performance nanoscale microwave oscillators in the world, a development that could lead to cheaper, more energy-efficient mobile communication devices that deliver much better signal quality.

Today's cell phones, WiFienabled tablets and other electronic gadgets all use microwave oscillators, tiny devices that generate the electrical signals used in communications. In a cell phone, for example, the transmitter and receiver circuits contain oscillators that produce radio-frequency signals, which are then converted by the phone's antenna into incoming and outgoing electromagnetic waves.

Current oscillators are silicon-based and use the charge of an electron to create microwaves. The UCLA-developed oscillators, however, utilize the spin of an electron, as in the case of magnetism, and carry several orders-of-magnitude advantages over the oscillators commonly in use today.

UCLA's electron spinbased oscillators grew out of research at the UCLA Henry Samueli School of Engineering and Applied Science sponsored by the Defense Advanced Research Projects Agency (DARPA). This research focused on STT-RAM, or spin-transfer torque magnetoresistive random access memory, which has great potential over other types of memory in terms of both speed and power efficiency.

"We realized that the layered nanoscale structures that make STT-RAM such a great candidate for memory could also be developed for microwave oscillators for communications," said principal investigator and research co-author Kang L. Wang, UCLA Engineering's Raytheon Professor of Electrical Engineering and director of the Western Institute for Nanoelectronics (WIN).

The structures, called spin-transfer nano-oscillators, or STNOs, are composed of two distinct magnetic layers. One layer has a fixed magnetic polar direction, while the other layer's magnetic direction can be manipulated to gyrate by passing an electric current through it. This allows the structure to produce very precise oscillating microwaves.

"Previously, there had been no demonstration of a spin-transfer oscillator with sufficiently high output power and simultaneously good signal quality, which are the two main metrics of an oscillator hence preventing practical applications," said co-author Pedram Khalili, project manager for the UCLADARPA research programs in STT-RAM and non-volatile logic. "We have realized both these requirements in a single structure."

The SNTO was tested to show a record-high output power of close to 1 micro-watt, with a record narrow signal linewidth of 25 megahertz. Output power refers to the strength of the signal, and 1 micro-watt is the desired level for STNOs to be practical for applications. Also, a narrow signal linewidth corresponds to a higher quality signal at a given frequency. This means less noise and interference, for a cleaner voice and video signal. It also means more users can be accommodated onto a given frequency band.

In addition, the new nanoscale system is about 10,000-times smaller than the silicon-based oscillators used today. The nano-oscillators can easily be incorporated into existing integrated circuits (computer chips), as they are compatible with current design and manufacturing standards in the computer and electronic device industries. And the oscillators can be used in both analog (voice) and digital (data) communications, which means smart phones could take full advantage of them.

"For the past decade, we have been working to realize a new paradigm in nanoelectronics and nanoarchitectures," said Wang, who is also a member of the California NanoSystems Institute at UCLA. "This has led to tremendous progress in memory research. And along those same lines, we believe these new STNOs are excellent candidates to succeed today's oscillators."

The paper, "High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy," has been published online in the journal ACS Nano.

Other key authors include Hongwen Jiang, UCLA professor of physics and astronomy, and lead author Zhongming Zeng, formerly a postdoctoral scholar in Jiang's laboratory and currently a professor at the Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences.


'/>"/>

Contact: Matthew Chin
mchin@support.ucla.edu
310-206-0680
University of California - Los Angeles
Source:Eurekalert

Related biology technology :

1. Wolters Kluwer Research Now Available via Bloomberg Tradebook
2. ACORN Research, LLC Announces Partnership with AdeptBio, LLC
3. New England Biolabs Introduces Polbase, an Information Repository of Scientific Data for Polymerase Researchers
4. Researching graphene nanoelectronics for a post-silicon world
5. In new quantum-dot LED design, researchers turn troublesome molecules to their advantage
6. BBVA Foundation Unites the Efforts of Massachusetts General Hospital and Barcelonas Vall dHebron Hospital in Biomarker Research for Personalized Cancer Therapies
7. New research points to benefits of innovative cobas® HPV test for primary screening as Englands cervical cancer screening programme includes the test in current HPV "triage" rollout
8. Multidisciplinary team of researchers develop world’s lightest material
9. K computer research results awarded ACM Gordon Bell Prize
10. ResearchMoz: Ophthalmic Devices Market to 2017 - Glaucoma and Cataract Surgery Devices, Minimally Invasive Procedures in Ophthalmic Surgery to Drive the Ophthalmic Surgery Market
11. Researchers shrink tumors and minimize side effects using tumor-homing peptide to deliver treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/27/2016)... New Jersey and ... Indegene ( http://www.indegene.com ... und marketingorientierten Lösungen für die Life-Science-Branche, Pharmaunternehmen ... ein bekannter weltweiter Anbieter von innovativen wissenschaftlichen ... Zuge des Starts von IntraScience heute den ...
(Date:5/26/2016)... , May 26, 2016 Q BioMed ... it will be a featured presenter at the 5th Annual ... New York City at the Grand Hyatt ... , Q BioMed Inc. CEO, is scheduled to begin at ... the company,s business strategy, recent developments and outline milestones for ...
(Date:5/26/2016)... ... May 26, 2016 , ... ... are used in leading laboratories all over the globe. Their cute firefly logo ... to manufacturing awesome cuvettes, FireflySci makes spectrophotometer calibration standards that never require recalibration. ...
(Date:5/25/2016)... ... May 25, 2016 , ... Founder of the Fitzmaurice Hand ... and surgery of the hand by the National Board of Physicians and Surgeons, ... and beyond in his pursuit of providing the most comprehensive, effective treatment for ...
Breaking Biology Technology:
(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
(Date:4/15/2016)... -- A new partnership announced today will help life ... a fraction of the time it takes today, ... insurance policies to consumers without requiring inconvenient and ... rapid testing (A1C, Cotinine and HIV) and higi,s ... pulse, BMI, and activity data) available at local ...
Breaking Biology News(10 mins):