Navigation Links
UCLA engineers develop new energy-efficient computer memory using magnetic materials
Date:12/14/2012

By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class of computer memory known as magnetoresistive random access memory, or MRAM.

The UCLA team's improved memory, which they call MeRAM for magnetoelectric random access memory, has great potential to be used in future memory chips for almost all electronic applications, including smart-phones, tablets, computers and microprocessors, as well as for data storage, like the solid-state disks used in computers and large data centers.

MeRAM's key advantage over existing technologies is that it combines extraordinary low energy with very high density, high-speed reading and writing times, and non-volatility the ability to retain data when no power is applied, similar to hard disk drives and flash memory sticks, but MeRAM is much faster.

Currently, magnetic memory is based on a technology called spin-transfer torque (STT), which uses the magnetic property of electrons referred to as spin in addition to their charge. STT utilizes an electric current to move electrons to write data into the memory.

Yet while STT is superior in many respects to competing memory technologies, its electric currentbased write mechanism still requires a certain amount of power, which means that it generates heat when data is written into it. In addition, its memory capacity is limited by how close to each other bits of data can be physically placed, a process which itself is limited by the currents required to write information. The low bit capacity, in turn, translates into a relatively large cost per bit, limiting STT's range of applications.

With MeRAM, the UCLA team has replaced STT's electric current with voltage to write data into the memory. This eliminates the need to move large numbers of electrons through wires and instead uses voltage the difference in electrical potential to switch the magnetic bits and write information into the memory. This has resulted in computer memory that generates much less heat, making it 10 to 1,000 times more energy-efficient. And the memory can be more than five-times as dense, with more bits of information stored in the same physical area, which also brings down the cost per bit.

The research team was led by principal investigator Kang L. Wang, UCLA's Raytheon Professor of Electrical Engineering, and included lead author Juan G. Alzate, an electrical engineering graduate student, and Pedram Khalili, a research associate in electrical engineering and project manager for the UCLADARPA research programs in non-volatile logic.

"The ability to switch nanoscale magnets using voltages is an exciting and fast-growing area of research in magnetism," Khalili said. "This work presents new insights into questions such as how to control the switching direction using voltage pulses, how to ensure that devices will work without needing external magnetic fields, and how to integrate them into high-density memory arrays.

"Once developed into a product," he added, "MeRAM's advantage over competing technologies will not be limited to its lower power dissipation, but equally importantly, it may allow for extremely dense MRAM. This can open up new application areas where low cost and high capacity are the main constraints."

Said Alzate: "The recent announcement of the first commercial chips for STT-RAM also opens the door for MeRAM, since our devices share a very similar set of materials and fabrication processes, maintaining compatibility with the current logic circuit technology of STT-RAM while alleviating the constrains on power and density."

The research was presented Dec. 12 in a paper called "Voltage-Induced Switching of Nanoscale Magnetic Tunnel Junctions" at the 2012 IEEE International Electron Devices Meeting in San Francisco, the semiconductor industry's "pre-eminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology."

MeRAM uses nanoscale structures called voltage-controlled magnet-insulator junctions, which have several layers stacked on top of each other, including two composed of magnetic materials. However, while one layer's magnetic direction is fixed, the other can be manipulated via an electric field. The devices are specially designed to be sensitive to electric fields. When the electric field is applied, it results in voltage a difference in electric potential between the two magnetic layers. This voltage accumulates or depletes the electrons at the surface of these layers, writing bits of information into the memory.

"Ultra-lowpower spintronic devices such as this one have potential implications beyond the memory industry," Wang said. They can enable new instant-on electronic systems, where memory is integrated with logic and computing, thereby completely eliminating standby power and greatly enhancing their functionality."


'/>"/>

Contact: Matthew Chin
mchin@support.ucla.edu
310-206-0680
University of California - Los Angeles
Source:Eurekalert

Related biology technology :

1. Engineers achieve longstanding goal of stable nanocrystalline metals
2. Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
3. Cloak of invisibility: Engineers use plasmonics to create an invisible photodetector
4. Straintronics: Engineers create piezoelectric graphene
5. Stanford engineers weld nanowires with light
6. Arizona State University engineers aim to improve performance of technology in extreme environments
7. Stanford engineers use nanophotonics to reshape on-chip computer data transmission
8. PathoGenetix Hires Food Safety Testing Expert John W. Czajka as Vice President of Business Development
9. Scientific Research & Development in the US Industry Market Research Report from IBISWorld has Been Updated
10. UT Arlington research team wins $1.35 million NSF robotics grant to develop smart skin applications
11. Provia Labs Hires Vice President of International Business Development to Expand Global Distribution for its Stem Cell Banking Service and Biobanking Products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:9/22/2017)... ... September 22, 2017 , ... Brain State ... via Kickstarter. The proceeds will be used to fund production of the company’s ... original Kickstarter goal by nearly 1,000%. , The B2v2 is the world’s first ...
(Date:9/22/2017)... ... 22, 2017 , ... HOLLOWAY AMERICA, a stainless steel pressure ... event PACK EXPO International in Las Vegas from September 25 to 27. The ... this year’s PACK EXPO at the Last Vegas Convention Center, HOLLOWAY representatives will ...
(Date:9/22/2017)... ... September 22, 2017 , ... ... Zalewsky in offering LANAP® and LAPIP™ laser treatments. Drs. Hoge and Zalewsky are ... patients, a minimally invasive and less painful option that produces real results. , ...
(Date:9/22/2017)... ... September 22, 2017 , ... The ... Denver, Colorado October 28 and 29, 2017, to promote AMA’s programs, member services, ... participation in different hobbies, including but not limited to model aviation and other ...
Breaking Biology Technology:
(Date:6/14/2017)... PARIS , June 15, 2017  IBM (NYSE: IBM ... the international tech event dedicated to developing collaboration between startups ... on June 15-17. During the event, nine startups will ... deliver value in various industries. ... in the international market, with a 30 percent increase in ...
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
Breaking Biology News(10 mins):