Navigation Links
UCL grows first telecommunications wavelength quantum dot laser on a silicon substrate
Date:6/13/2011

A new generation of high speed, silicon-based information technology has been brought a step closer by researchers in the Department of Electronic and Electrical Engineering at UCL and the London Centre for Nanotechnology. The team's research, published in next week's Nature Photonics journal, provides the first demonstration of an electrically driven, quantum dot laser grown directly on a silicon substrate (Si) with a wavelength (1300-nm) suitable for use in telecommunications.

Silicon is the most widely used material for the fabrication of active devices in electronics. However, the nature of its atomic structure makes it extremely hard to realise an efficient light source in this material.

As the speed and complexity of silicon electronics increases, it is becoming harder to interconnect large information processing systems using conventional copper electrical interconnects. For this reason the field of silicon photonics (the development of optical interconnects for use with silicon electronics) is becoming increasingly important.

The ideal light source for silicon photonics would be a semiconductor laser, for high efficiency, direct interfacing with silicon drive electronics and high-speed data modulation capability. To date, the most promising approach to a light source for silicon photonics has been the use of wafer bonding to join compound semiconductor laser materials from which lasers can be made to a silicon substrate.

Direct growth of compound semiconductor laser material on silicon would be an attractive route to full integration for silicon photonics. However, the large differences in crystal lattice constant between silicon and compound semiconductors cause dislocations in the crystal structure that result in low efficiency and short operating lifetime for semiconductor lasers.

The UCL group has overcome these difficulties by developing special layers which prevent these dislocations from reaching the laser layer together with a quantum dot laser gain layer. This has enabled them to demonstrate an electrically pumped 1,300 nm wavelength laser by direct epitaxial growth on silicon. In a recent paper in Optics Express (Vol. 19 Issue 12, pp.11381-11386 (2011)) they report an optical output power of over 15 mW per facet at room temperature.

In related work the group, working with device fabrication colleagues at the EPSRC National Centre for III-V Technologies, have demonstrated the first quantum dot laser on a germanium (Ge) substrate by direct epitaxial growth. The laser, reported in Nature Photonics , (DOI: 10.1038/NPHOTON.2011.120, 12 June 2009) is capable of continuous operation at temperatures up to 70 deg. C and has a continuous output power of over 25 mW per facet.

Leader of the epitaxy research that enabled the creation of these lasers and Royal Society University Research Fellow in the UCL Department of Electronic and Electrical Engineering, Dr Huiyun Liu, said: "The use of the quantum dot gain layer offers improved tolerance to residual dislocations relative to conventional quantum well structures. Our work on germanium should also permit practical lasers to be created on the Si/Ge substrates that are an important part of the roadmap for future silicon technology."

Head of the Photonics Group in the UCL Department of Electronic and Electrical Engineering, Principal Investigator in the London Centre for Nanotechnology and Director of the EPSRC Centre for Doctoral Training in Photonic Systems Development, Professor Alwyn Seeds, said: "The techniques that we have developed permit us to realise the Holy Grail of silicon photonics - an efficient, electrically pumped, semiconductor laser integrated on a silicon substrate. Our future work will be aimed at combining these lasers with waveguides and drive electronics leading to a comprehensive technology for the integration of photonics with silicon electronics."


'/>"/>

Contact: Alwyn Seeds
a.seeds@ee.ucl.ac.uk
44-207-679-7928
University College London
Source:Eurekalert

Related biology technology :

1. Codexis Grows Revenue 35 Percent in Third Quarter; Raises 2010 Outlook
2. Empa grows sea urchin-shaped structures
3. Dramatic changes in agriculture needed as world warms and grows, researchers say
4. Nations Largest Network of Doctors Specializing in Bioidentical Hormones Grows at an Exponential Rate
5. The MedZilla Report for October 2009 - Health Care Employment Grows Again in October Even As Clinics, Specialty Centers Close
6. The MedZilla Report for September 2009 - Care Grows Again in September and - Surprisingly - Pharma Sales Jobs Up Too
7. Impact of Open Source Software on Clinical Trials Grows With Release of OpenClinica 3.0 Electronic Data Capture Software
8. The MedZilla Report for August 2009 -- Health Care Grows Another 28,000 While Hospitals And Insurers Feel Painful Pinch
9. Video shows nanotube spins as it grows
10. Bacterin International Signs Its Second National GPO Contract for Bacterin Biologics and Its First For Wound Drains with ROi
11. BioStorage Technologies Showcases First-Ever Mobile Biorepository - Relofleetâ„¢ at Drug Information Association Annual Meeting
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/9/2017)... Charlotte, N.C. (PRWEB) , ... October 09, 2017 , ... ... Purple announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and ... Dr. Stubbs was a member of the winning team for the 2015 Breakthrough Prize ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... and applications consulting for microscopy and surface analysis, Nanoscience Instruments is now ... Analytical offers a broad range of contract analysis services for advanced applications. ...
(Date:10/6/2017)... , ... October 06, 2017 , ... ... within the healthcare and technology sector at their fourth annual Conference where founders, ... 30 inspiring speakers and the ELEVATE pitch competition showcasing early stage digital health ...
(Date:10/5/2017)... ... 05, 2017 , ... Understanding the microbiome, the millions of bacteria that live ... You Are My Future, the newest exhibit on display at the University City Science ... condition through the lens of the gut microbiome. , Gut Love opens October ...
Breaking Biology Technology:
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):