Navigation Links
UCF nanoparticle discovery opens door for pharmaceuticals
Date:8/7/2012

What a University of Central Florida student thought was a failed experiment has led to a serendipitous discovery hailed by some scientists as a potential game changer for the mass production of nanoparticles.

Soroush Shabahang, a graduate student in CREOL (The College of Optics & Photonics), made the finding that could ultimately change the way pharmaceuticals are produced and delivered.

The discovery was based on using heat to break up long, thin fibers into tiny, proportionally sized seeds, which have the capability to hold multiple types of materials locked in place. The work, published in the July 18 issue of Nature, opens the door to a world of applications.

Craig Arnold, associate professor of Mechanical and Aerospace Engineering at Princeton University and an expert in laser material interactions who did not work on the project, said no one else in the field has been able to accomplish that feat.

With a new non-chemical method of creating identical particles of any size in large quantities, "the possible applications are up to your imagination," Arnold said.

The most immediate prospect is the creation of particles capable of drug delivery that could, for example, combine different agents for fighting a tumor. Or it could combine a time-release component with medications that will only activate once they reach their target infected cells.

"With this approach you can make a very sophisticated structure with no more effort than creating the simplest of structures," said Ayman Abouraddy, an assistant professor at CREOL and Shabahang's mentor and advisor. Abouraddy has spent his career, first at the Massachusetts Institute of Technology and now at UCF, studying the fabrication of multimaterial fibers.

The technique relies on heat to break molten fibers into spherical droplets. Imagine water dripping from a faucet. Glass fibers are perhaps best known as the cylindrical cables that transmit digital information over long distances. For year, scientists have been looking for ways to improve the purity of glass fibers to allow for faster, disruption-free transmission of light waves.

Shabahang and fellow graduate student Joshua Kaufman were working on just such a project, heating and stretching glass fiber on a homemade tapering machine. Shabahang noticed that instead of the desired result of making the center of the cable thinner, the material actually broke apart into multiple miniature spheres.

"It was kind of a failure to me," Shabahang said.

However, when Abouraddy heard what had happened he knew right away that this "mistake" was a major breakthrough.

While at MIT, Abouraddy and his mentor, Yoel Fink, a professor of materials science and current director of MIT's Research Laboratory of Electronics, said they were told by a theoretician that molten optical fiber should align with a process known as Rayleigh instability, which explains what causes a falling stream of fluid to break into droplets.

At the time, the MIT group was focused on producing fibers containing multiple materials. The team produced fibers by heating a scale model called a "preform" and stretching it apart much the way taffy is made. The process is known as thermal drawing.

Shabahang's experiment shows that by heating and then cooling multimaterial fibers, the theoretical became reality. Uniform particles that look like droplets are produced. Moreover, Shabahang demonstrated that once the spheres form, additional materials can be added and locked into place like LEGO building blocks, resulting in particles with sophisticated internal structures.

Especially significant is the creation of "beach ball" particles consisting of two different materials melded together in alternating fashion, similar to the stripes on a beach ball.

Kaufman, Shabahang and Abouraddy contributed to the Nature article in addition to Guangming Tao from CREOL, UCF; Esmaeil-Hooman Banaei from the Department of Electrical Engineering & Computer Science, UCF; Daosheng S. Deng, Department of Chemical Engineering, MIT; Xiangdong Liang, Department of Mathematics, MIT; Steven G. Johnson, Department of Mathematics, MIT; and Yoel Fink from MIT.


'/>"/>

Contact: Barbara Abney
407-823-5139
University of Central Florida
Source:Eurekalert  

Related biology technology :

1. New structural information on functionalization of gold nanoparticles
2. Gold nanoparticles could treat prostate cancer with fewer side effects than chemotherapy
3. Study improves understanding of surface molecules in controlling size of gold nanoparticles
4. Nanoparticles found in moon glass bubbles explain weird lunar soil behavior
5. Nanoparticles seen as artificial atoms
6. A milestone in nanoparticle research: Nanoparticle test handbook sets the standards
7. Light touch keeps a grip on delicate nanoparticles
8. New technique uses electrons to map nanoparticle atomic structures
9. New measuring techniques can improve efficiency, safety of nanoparticles
10. Metal nanoparticles shine with customizable color
11. Nanoparticle electrode for batteries could make grid-scale power storage feasible
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCF nanoparticle discovery opens door for pharmaceuticals
(Date:2/4/2016)... ... February 04, 2016 , ... Many of the engineers at FireflySci, ... What sets them apart from other cuvette manufacturers is their supercharged customer service ... On top of this steady flow of inside information, they have recently revamped ...
(Date:2/3/2016)... -- Ascendis Pharma A/S (Nasdaq: ASND ), a ... technology to address significant unmet medical needs, today announced ... Partners Global Healthcare Conference Location: , Waldorf Astoria, ... Time:  , 11:55am EST www.ascendispharma.com . ... audio webcast of this event will be posted to ...
(Date:2/3/2016)... ... 2016 , ... ProMIS Neurosciences is currently in the process ... propagating strains of Amyloid beta involved in Alzheimer’s disease. The Company plans to ... on from the first misfolded Amyloid beta target announced on Nov. 12, 2015, ...
(Date:2/3/2016)... ALTO, Calif. , Feb. 3, 2016  Today, ... sale of AlphaImpactRx , a leading provider of ... health companies to IMS Health , a global ... AlphaImpactRx,s complementary offerings, capabilities and technologies will be integrated ... company,s growing global primary market research capabilities. ...
Breaking Biology Technology:
(Date:1/8/2016)... , January 8, 2016 NXTD ... and WorldVentures ® , a privately held leading direct ... Inc. 5000 fastest-growing company announced that on ... of $2 million in Nxt-ID to develop a proprietary ... Nxt-ID,s Wocket ® , a unique smart wallet that ...
(Date:1/7/2016)... Jan. 7, 2016 Various factors have ... products such as biologics and biosimilars. Some of ... healthcare expenditure, growing demand for cost-effective alternatives, growing ... Biosimilars are similar versions of their corresponding patented ... their quality, safety, and efficacy. The global biosimilars ...
(Date:1/6/2016)... , Jan. 6, 2016  Varam Capital, a ... their trusted partner to deliver advanced authentication solutions to ... services to the poor. A loan of a few ... lives, giving them the ability to purchase livestock or ... make clothing, or stock for a local store. ...
Breaking Biology News(10 mins):