Navigation Links
U of T scientist leads international team in quantum physics first
Date:6/2/2011

TORONTO, ON - Quantum mechanics is famous for saying that a tree falling in a forest when there's no one there doesn't make a sound. Quantum mechanics also says that if anyone is listening, it interferes with and changes the tree. And so the famous paradox: how can we know reality if we cannot measure it without distorting it?

An international team of researchers, led by University of Toronto physicist Aephraim Steinberg of the Centre for Quantum Information and Quantum Control, have found a way to do just that by applying a modern measurement technique to the historic two-slit interferometer experiment in which a beam of light shone through two slits results in an interference pattern on a screen behind.

That famous experiment, and the 1927 Neils Bohr and Albert Einstein debates, seemed to establish that you could not watch a particle go through one of two slits without destroying the interference effect: you had to choose which phenomenon to look for.

"Quantum measurement has been the philosophical elephant in the room of quantum mechanics for the past century," says Steinberg, who is lead author of Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer, to be published in Science on June 2. "However, in the past 10 to 15 years, technology has reached the point where detailed experiments on individual quantum systems really can be done, with potential applications such as quantum cryptography and computation."

With this new experiment, the researchers have succeeded for the first time in experimentally reconstructing full trajectories which provide a description of how light particles move through the two slits and form an interference pattern. Their technique builds on a new theory of weak measurement that was developed by Yakir Aharonov's group at Tel Aviv University. Howard Wiseman of Griffith University proposed that it might be possible to measure the direction a photon (particle of light) was moving, conditioned upon where the photon is found. By combining information about the photon's direction at many different points, one could construct its entire flow pattern ie. the trajectories it takes to a screen.

"In our experiment, a new single-photon source developed at the National Institute for Standards and Technology in Colorado was used to send photons one by one into an interferometer constructed at Toronto. We then used a quartz calcite, which has an effect on light that depends on the direction the light is propagating, to measure the direction as a function of position. Our measured trajectories are consistent, as Wiseman had predicted, with the realistic but unconventional interpretation of quantum mechanics of such influential thinkers as David Bohm and Louis de Broglie," said Steinberg.

The original double-slit experiment played a central role in the early development of quantum mechanics, leading directly to Bohr's formulation of the principle of complementarity. Complementarity states that observing particle-like or wave-like behaviour in the double-slit experiment depends on the type of measurement made: the system cannot behave as both a particle and wave simultaneously. Steinberg's recent experiment suggests this doesn't have to be the case: the system can behave as both.

"By applying a modern measurement technique to the historic double-slit experiment, we were able to observe the average particle trajectories undergoing wave-like interference, which is the first observation of its kind. This result should contribute to the ongoing debate over the various interpretations of quantum theory," said Steinberg. "It shows that long-neglected questions about the different types of measurement possible in quantum mechanics can finally be addressed in the lab, and weak measurements such as the sort we use in this work may prove crucial in studying all sorts of new phenomena.

"But mostly, we are all just thrilled to be able to see, in some sense, what a photon does as it goes through an interferometer, something all of our textbooks and professors had always told us was impossible."


'/>"/>

Contact: Kim Luke
kim.luke@utoronto.ca
416-978-4352
University of Toronto
Source:Eurekalert

Related biology technology :

1. Scientists Discover Gene Regulator That Helps Hearts Through Exercise
2. New findings by UCR scientists hold big promise for fight against mosquito-borne diseases
3. Led by Advances in Chemical Synthesis, Scripps Research Scientists Discover that a Rare Natural Product Has Potent Pain-Killing Properties
4. Article by GeoVax Labs CSO Featured in The Scientist
5. 2011 Outstanding Young Scientist and Engineer Named; Baltimore City High School Students Awarded Glass Scholarships
6. NRL scientists achieve high temperature milestone in silicon spintronics
7. Now, the story can be told how scientists helped ID Amerithrax
8. Scientists engineer nanoscale vaults to encapsulate nanodisks for drug delivery
9. UCLA scientists discover new way to wake up the immune system using nano vaults to deliver drugs
10. March of Dimes Awards $250,000 Prize to Scientists Who Explained Human Sex Chromosomes
11. UMD scientists make magnetic new graphene discovery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... Calif. , Feb. 11, 2016  Dovetail Genomics™ ... to its beta program for a planned metagenomic genome ... present the company,s metagenomic genome assembly method in a ... in Genome Biology & Technology conference in ... of these highly complex datasets is difficult. Using its ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global Stem ... clinic in Quito, Ecuador. The new facility will provide advanced protocols and state-of-the-art ... around the world. , The new GSCG clinic is headed by four ...
(Date:2/10/2016)... is introducing a hybrid membership model which will provide ... joining or renewing through an organizational purchasing model. For ... employee in any size association or AMC office can ... benefits.   John H. Graham, IV , ... organizations of any size and their employees to gain ...
(Date:2/10/2016)... ... 2016 , ... Benchmark Research, a fully-integrated network of ... principal investigators (PI) to the roles of Chief Medical Officer, Clinical Research and ... Chu, a Benchmark Research PI in the Austin office, will assume the role ...
Breaking Biology Technology:
(Date:2/2/2016)... YORK , Feb. 2, 2016 /PRNewswire/ ... facilities are primarily focused on medical screening ... measure point-of-care parameters. Wearable devices that facilitate ... user,s freedom of movement are being bolstered ... for human biomedical signal acquisition coupled with ...
(Date:2/2/2016)... 2016   Parabon NanoLabs (Parabon) announced ... Research Office and the Defense Forensics and Biometrics ... the company,s Snapshot Kinship Inference software ... generally, defense-related DNA forensics.  Although Snapshot is best ... and ancestry from DNA evidence), it also has ...
(Date:2/1/2016)... MELBOURNE, Fla. , Feb. 1, 2016  Wocket® smart wallet ( ... actor and television personality, Joey Fatone . Las ... and greet fans. --> Las Vegas , ... --> The new video ad was filmed at the ... Joey appeared at the Wocket booth to meet and greet fans. ...
Breaking Biology News(10 mins):