Navigation Links
U-Md. Researchers Report Advance in Biological Microfactories for Drug Research
Date:4/7/2008

COLLEGE PARK, Md., April 7, 2008 /PRNewswire-USNewswire/ -- A cross-disciplinary research team at the University of Maryland has shown for the first time that their microscopic drug research platform can produce the chemical reactions needed to test potential drugs.

After researchers placed an enzyme on a tiny "biochip" created to mimic the environment within the human body, the enzyme performed as it normally would. This means that the researchers can proceed to the next step--testing new drugs to see, for instance, how effectively they can inhibit bacteria like E. coli.

This advance builds on prior work by the team, which brings together expertise in bioengineering, biomolecular engineering, materials science, and electrical and computer engineering at the University of Maryland's A. James Clark School of Engineering and the University of Maryland Biotechnology Institute (UMBI). The researchers have developed the biochip, a programmable biological microfactory, which will be used to test drugs and eventually deliver them where they are needed.

"We have now demonstrated perhaps the key advance needed to realize what we seek, a powerful laboratory tool for drug discovery," said Gary Rubloff, professor in the Clark School's Department of Materials Science and Engineering and Institute for Systems Research (ISR), director of the Maryland NanoCenter, and a member of the research team.

"Using biochip microfactories, we believe it will be possible to test potential drugs," Rubloff said. "We hope to enable scientists and physicians to create better, more effective drugs more rapidly and at reduced cost."

The microfactory allows the researchers to manipulate substances using fluid, electrical and optical means. For instance, the researchers used electrical voltage to place a substance called chitosan on the biochip. Chitosan serves as a platform for assembling biomolecules.

One targeted application of the microfactory is to develop drugs that can interrupt a process called "quorum-sensing."

In quorum-sensing, bacteria cells, such as E. coli, communicate with each other to form a quorum or group capable of creating an infection. The team has already demonstrated that it is possible to interrupt this quorum-sensing ability or to introduce new communication to ultimately prevent such infections.

Candidate drugs will be applied in the microfactory to test their ability to suppress or interrupt quorum-sensing. Drugs that succeed will not only serve as good candidates for new antibiotics, but they promise a new strategy for antibiotic therapy.

"Since the drugs won't kill the bacteria, the bacteria won't be stimulated to mutate, which renders too many antibiotics no longer effective, since the mutated bacterial strains are not killed any more by the original antibiotic," Rubloff said.

The team envisions the use of programmable biological microfactories as tools for rapid screening and development of new drugs prior to time-consuming, expensive clinical trials.

"Any lab screening that is faster or more efficient in identifying new drugs could also reduce drug costs and time to market," Rubloff said.

This development advances research funded by the Robert W. Deutsch Foundation and a National Science Foundation Emerging Frontiers in Research and Innovation grant of $2 million awarded to Rubloff; Greg Payne, director of the UMBI's Center for Biosystems Research; Reza Ghodssi, associate professor with the Clark School's electrical and computer engineering department and ISR; and William Bentley, Robert E. Fischell Distinguished Professor and chair of the Fischell Department of Bioengineering.

Results are reported in a recent issue of the journal Lab on a Chip (vol. 8, pp. 420-430, 2008). Lab on a Chip paper: http://www.rsc.org/Publishing/Journals/LC/article.asp?doi=b713756g

For an earlier press release on this project:

http://www.eng.umd.edu/media/pressreleases/pr091807_efri.html

NOTE TO EDITORS: high-res photos and a glossary of terms are available online here: http://www.eng.umd.edu/media/pressreleases/pr040708_biochip.html.

Helpful Links

Clark School News Story:

http://www.mse.umd.edu/news/news_story.php?id=3027

Institute for Systems Research: http://www.isr.umd.edu

Fischell Department of Bioengineering: http://www.bioe.umd.edu

Department of Electrical and Computer Engineering: http://www.ece.umd.edu

Maryland NanoCenter: http://www.nanocenter.umd.edu

University of Maryland Biotechnology Institute: http://www.umbi.umd.edu

Related Work

"Side Effects Do Not Include...:" Clark School Shows In Vivo "Nanofactories" Can Make and Deliver Targeted Drugs (http://www.eng.umd.edu/media/pressreleases/pr022707_invivo.html)

About the A. James Clark School of Engineering

The Clark School of Engineering, situated on the rolling, 1,500-acre University of Maryland campus in College Park, Md., is one of the premier engineering schools in the U.S.

The Clark School's graduate programs are collectively the fastest rising in the nation. In U.S. News & World Report's annual rating of graduate programs, the school is 17th among public and private programs nationally, 11th among public programs nationally and first among public programs in the mid-Atlantic region. The School offers 13 graduate programs and 12 undergraduate programs, including degree and certification programs tailored for working professionals.

The school is home to one of the most vibrant research programs in the country. With major emphasis in key areas such as communications and networking, nanotechnology, bioengineering, reliability engineering, project management, intelligent transportation systems and space robotics, as well as electronic packaging and smart small systems and materials, the Clark School is leading the way toward the next generations of engineering advances.

Visit the Clark School homepage at http://www.eng.umd.edu.

About the University of Maryland Biotechnology Institute

With research centers in Baltimore, Rockville, and College Park, UMBI, the University of Maryland Biotechnology Institute, is the newest of 13 institutions forming the University System of Maryland. UMBI has more than 60 ladder-ranked faculty and a mandate to advance the biotechnology economy while preparing a well-equipped workforce. Celebrating more than 20 years of service to Maryland and the world, UMBI is led by microbiologist and former biotechnology executive Dr. Jennie C. Hunter-Cevera. For more information visit http://www.umbi.umd.edu.


'/>"/>
SOURCE A. James Clark School of Engineering
Copyright©2008 PR Newswire.
All rights reserved

Related biology technology :

1. Researchers improve ability to write and store information on electronic devices
2. Long-awaited international ethical guidelines for biobank researchers
3. CU researchers shed light on light-emitting nanodevice
4. Stevens researchers provide new information about mass spectrometry
5. Researchers measure carbon nanotube interaction
6. Researchers underscore limitations of genetic ancestry tests
7. ASU researchers improve memory devices using nanotech
8. UD researchers race ahead with latest spintronics achievement
9. Researchers outline structure of largest nonvirus particle ever crystallized
10. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
11. Researchers use magnetism to target cells to animal arteries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2016)... ... February 09, 2016 , ... ... innovations on its free and validated Electronic Data Capture (EDC) system ClinCaptureand its ... in Clinical Trials West Coast 2016 Conference in San Mateo, California on February ...
(Date:2/9/2016)... HOUSTON , Feb. 9, 2016 /PRNewswire/ ... virus-driven immunotherapies for cancer, announced that its ... the European Commission as an orphan medicinal ... the deadliest form of glioma, strikes approximately ... and EU. http://photos.prnewswire.com/prnh/20160208/330986LOGO ...
(Date:2/9/2016)... 9, 2016 DelveInsight,s, ... report provides in depth insights on the ... the Protein-Tyrosine Phosphatase 1B (PTP1B) Inhibitors. The ... various stages of development including Discovery, Pre-clinical, ... and Preregistration. Report covers the product clinical ...
(Date:2/8/2016)... Inc. today announced that Director Robert A. Ingram has ... addition, Robert Keegan has been appointed to the Board ... --> North Carolina . --> ... $32.8 million of net proceeds in a private Mezzanine B financing ... Research Triangle area of North Carolina . ...
Breaking Biology Technology:
(Date:1/15/2016)... Rico , Jan. 15, 2016 Recent ... and small to find new ways to ensure data ... iOS and Android that ... on biometrics, transforming it into a hardware authorization token. ... users swipe their fingerprint on their KodeKey enabled device ...
(Date:1/11/2016)... Calif. , Jan. 11, 2016 Synaptics ... human interface solutions, today announced that its ClearPad ® ... integration (TDDI) products won two separate categories in the ... Mobile Innovator and Best Technology Breakthrough. The Synaptics ® ... cost, a simplified supply chain, thinner devices, brighter displays ...
(Date:1/8/2016)... 8, 2016 NXTD ), a ... ® , a privately held leading direct seller of ... 5000 fastest-growing company announced that on December 31, ... million in Nxt-ID to develop a proprietary new wireless ... ® , a unique smart wallet that serves to ...
Breaking Biology News(10 mins):