Navigation Links
Tying atomic threads in knots may produce material benefits

A new generation of lighter, stronger plastics could be produced using an intricate chemical process devised by scientists.

Chemists working on the nanoscale 80,000 times smaller than a hair's breadth have managed to tie molecules into complex knots that could give materials exceptional versatility.

By weaving threads of atoms into the shape of five-point stars, researchers at the University of Edinburgh have created the building blocks of materials that could be supremely flexible and shock absorbent.

They hope that the new molecules known as pentafoil knots will mimic the characteristics of complex knots found in proteins and DNA, which help to make some substances elastic.

In natural rubber, for example, 85 per cent of its elasticity is caused by knot-like entanglements in its molecule chain.

Creating knotted structures in the laboratory should make it easier for scientists to observe and understand exactly how entanglements influence a material's properties.

And being able to produce materials with a specific number of well-defined knots, rather than the random mixture that occurs in today's plastics and polymers, scientists could exercise greater control when designing materials.

The research, funded by the Engineering and Physical Sciences Research Council, is reported in Nature Chemistry journal.

The Edinburgh team, working with researchers from the University of Jyvskyl in Finland, is the first to create a knot with five crossing points.

The pentafoil, also known as a Solomon's seal knot, has symbolic significance in many cultures and is the central emblem on the flags of Morocco and Ethiopia.

Deliberately tying molecules into knots so that its properties can be studied is extremely difficult. Until now, only the simplest type of knot the trefoil, with three crossing points has been created by scientists.

Remarkably, the thread of atoms that the Edinburgh team has tied into a five-star knot is just 160 atoms in length and measures a 16-millionth of a millimetre.

Using a technique known as self-assembly, the researchers produced a chemical reaction in which atoms were chemically programmed to spontaneously wrap themselves up into the desired knot.

Principal researcher David Leigh, Forbes Professor of Organic Chemistry at the University of Edinburgh, said: "It's very early to say for sure, but the type of mechanical cross-linking we have just carried out could lead to very light but strong materials - something akin to a molecular chain mail.

"It could also produce materials with exceptional elastic or shock-absorbing properties because molecular knots and entanglements are intimately associated with those characteristics. By understanding better how those structures work - and being able to create them to order - we should be able to design materials that exploit those architectures with greater effect."

Contact: Catriona Kelly
University of Edinburgh

Related biology technology :

1. Linden Enters Anatomic Pathology Sector Through Investment in Strata Pathology Services, Inc.
2. Lehigh University leads Department of Defense MURI grant for atomic-scale interphase research
3. Seeing an atomic thickness
4. Getting the point: Real-time monitoring of atomic-microscope probes adjusts for wear
5. Probing atomic chicken wire
6. 3-D nanoparticle in atomic resolution
7. Manufacturing made to measure atomic-scale electrodes
8. Unprecedented look at oxide interfaces reveals unexpected structures on atomic scale
9. Depth charge: Using atomic force microscopy to study subsurface structures
10. Physicists capture first images of atomic spin
11. A little less force: Making atomic force microscopy work for cells
Post Your Comments:
(Date:11/25/2015)... Francisco, CA (PRWEB) , ... November 25, 2015 ... ... microbial genomics company uBiome, were featured on AngelList early in their initial angel ... launching an AngelList syndicate for individuals looking to make early stage investments in ...
(Date:11/24/2015)... Nov. 24, 2015 /CNW/ - iCo Therapeutics ("iCo" or ... financial results for the quarter ended September 30, ... Canadian dollars and presented under International Financial Reporting ... ," said Andrew Rae , President ... iCo-008 are not only value enriching for this ...
(Date:11/24/2015)... --> --> ... Synthesis Market by Product & Services (Primer, Probe, Custom ... RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - ... is expected to reach USD 1,918.6 Million by 2020 ... of 10.1% during the forecast period. Browse ...
(Date:11/24/2015)... Israel , Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) ... on December 29, 2015 at 11:00 a.m. Israel ... Electra Tower, 98 Yigal Allon Street, 36 th Floor, ... of Eric Paneth and Izhak Tamir to the ... Rami Skaliter as external directors; , approval of an amendment to ...
Breaking Biology Technology:
(Date:11/17/2015)... LIVERMORE, Calif. , Nov. 17, 2015  Vigilant ... has joined its Board of Directors. ... Vigilant,s Board after recently retiring from the partnership at ... owning 107 companies with over $140 Billion in revenue.  ... performance improvement across all the TPG companies, from 1997 ...
(Date:11/12/2015)... , Nov. 11, 2015   Growing ... reliable analytical tools has been paving the way ... qualitative determination of discrete analytes in clinical, agricultural, ... are being predominantly used in medical applications, however, ... environmental sectors due to continuous emphasis on improving ...
(Date:11/9/2015)... 9, 2015  Synaptics Inc. (NASDAQ: SYNA ), ... broader entry into the automotive market with a comprehensive ... pace of consumer electronics human interface innovation. Synaptics, industry-leading ... for the automotive industry and will be implemented in ... Europe , Japan , and ...
Breaking Biology News(10 mins):