Navigation Links
Tying atomic threads in knots may produce material benefits
Date:11/8/2011

A new generation of lighter, stronger plastics could be produced using an intricate chemical process devised by scientists.

Chemists working on the nanoscale 80,000 times smaller than a hair's breadth have managed to tie molecules into complex knots that could give materials exceptional versatility.

By weaving threads of atoms into the shape of five-point stars, researchers at the University of Edinburgh have created the building blocks of materials that could be supremely flexible and shock absorbent.

They hope that the new molecules known as pentafoil knots will mimic the characteristics of complex knots found in proteins and DNA, which help to make some substances elastic.

In natural rubber, for example, 85 per cent of its elasticity is caused by knot-like entanglements in its molecule chain.

Creating knotted structures in the laboratory should make it easier for scientists to observe and understand exactly how entanglements influence a material's properties.

And being able to produce materials with a specific number of well-defined knots, rather than the random mixture that occurs in today's plastics and polymers, scientists could exercise greater control when designing materials.

The research, funded by the Engineering and Physical Sciences Research Council, is reported in Nature Chemistry journal.

The Edinburgh team, working with researchers from the University of Jyvskyl in Finland, is the first to create a knot with five crossing points.

The pentafoil, also known as a Solomon's seal knot, has symbolic significance in many cultures and is the central emblem on the flags of Morocco and Ethiopia.

Deliberately tying molecules into knots so that its properties can be studied is extremely difficult. Until now, only the simplest type of knot the trefoil, with three crossing points has been created by scientists.

Remarkably, the thread of atoms that the Edinburgh team has tied into a five-star knot is just 160 atoms in length and measures a 16-millionth of a millimetre.

Using a technique known as self-assembly, the researchers produced a chemical reaction in which atoms were chemically programmed to spontaneously wrap themselves up into the desired knot.

Principal researcher David Leigh, Forbes Professor of Organic Chemistry at the University of Edinburgh, said: "It's very early to say for sure, but the type of mechanical cross-linking we have just carried out could lead to very light but strong materials - something akin to a molecular chain mail.

"It could also produce materials with exceptional elastic or shock-absorbing properties because molecular knots and entanglements are intimately associated with those characteristics. By understanding better how those structures work - and being able to create them to order - we should be able to design materials that exploit those architectures with greater effect."


'/>"/>
Contact: Catriona Kelly
Catriona.Kelly@ed.ac.uk
44-131-651-4401
University of Edinburgh
Source:Eurekalert

Related biology technology :

1. Linden Enters Anatomic Pathology Sector Through Investment in Strata Pathology Services, Inc.
2. Lehigh University leads Department of Defense MURI grant for atomic-scale interphase research
3. Seeing an atomic thickness
4. Getting the point: Real-time monitoring of atomic-microscope probes adjusts for wear
5. Probing atomic chicken wire
6. 3-D nanoparticle in atomic resolution
7. Manufacturing made to measure atomic-scale electrodes
8. Unprecedented look at oxide interfaces reveals unexpected structures on atomic scale
9. Depth charge: Using atomic force microscopy to study subsurface structures
10. Physicists capture first images of atomic spin
11. A little less force: Making atomic force microscopy work for cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/20/2017)... Koert van Mensvoort - founder of the Next Nature Network and ... has written a ,Letter to Humanity, in support of International Earth ... and victim to its own technology, but to employ technology to enhance our ... ... of the Next Nature Network and Fellow of ‘Next Nature’ at the University ...
(Date:4/19/2017)... ... April 18, 2017 , ... The Vibrating ... key device for generating monodisperse droplets of known diameters for research applications such ... monodisperse solid particles by drying monodisperse droplets. , The VOAG requires forcing ...
(Date:4/19/2017)... , ... April 18, 2017 , ... ... Halo Labs . The move comes after the company changed focus to making ... our new brand and our new technology,” says CEO Robert Hart. Founders Bernardo ...
(Date:4/19/2017)... ... April 19, 2017 , ... WHO: Peggy Lillis ... through education and advocacy. Founded in 2010 in memory of a single-parent mom ... foundation has become the most-consulted source for patient-focused information on C. diff infections ...
Breaking Biology Technology:
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced ... will feature emerging and evolving technology through ... Innovation Summits will run alongside the expo portion of ... sessions, panels and demonstrations focused on trending topics within ... advanced design and manufacturing event will take place June ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
Breaking Biology News(10 mins):