Navigation Links
Triangles guide the way for live neural circuits in a dish

Korean scientists have used tiny stars, squares and triangles as a toolkit to create live neural circuits in a dish.

They hope the shapes can be used to create a reproducible neural circuit model that could be used for learning and memory studies as well as drug screening applications; the shapes could also be integrated into the latest neural tissue scaffolds to aid the regeneration of neurons at injured sites in the body, such as the spinal cord.

Published today, 20 July, in IOP Publishing's Journal of Neural Engineering, the study, by researchers at the Korea Advanced Institute of Science and Technology (KAIST), found that triangles were the most effective shape for helping to facilitate the growth of axons and guide them onto specific paths to form a complete circuit.

Co-author of the study, Professor Yoonkey Nam, said: "Eventually, we want to know if we can design a neural tissue model that biologically mimics some neural circuits in our brain."

A neuron is an electrically excitable cell that processes and transmits information around the body. The neuron is composed of three main parts: a cell body, or soma, dendrites and an axon, which extends from the soma and links to other cells, creating a network.

When axons grow they are usually guided by proteins. Many researchers have been trying to re-create this key process in a dish by manipulating nerve cells from rat brains.

As nerve cells are usually just a few tens of micrometres in size, the challenge associated with creating a live neural network is firstly positioning cells in desired locations and, secondly, making connections between these cells by guiding the axons in designated directions.

The researchers investigated whether two star shapes, five regular shapes (square, circle, triangle, pentagon and hexagon) and three different sizes of isosceles triangles could guide axons in designated directions. Each shape was the size of a single cell and was replicated to form an array which was printed onto a glass surface.

Each of the arrays had an overall size of 1cm-by-1cm with a gap of 10 micrometres between each shape. Hippocampal neurons were taken from rats and plated onto the patterned surfaces. The neurons were fluorescently labelled with dyes so that images could be taken of their growth.

The researchers found that triangles were the most efficient shape to encourage the growth and guidance of an axon. The key to this was the angles at the points where two of the triangle's lines meet, also known as the vertices. It was shown that the smaller the vertices, the higher chance the triangle had of inducing growth.

"Based on our results, we are suggesting a new design principle for guiding axons in a dish. We can control the axonal growth in a certain direction by putting a sharp triangle pointing to a certain direction. Then, a neuron that adhered to the triangle will have an axon in the sharp vertex direction.

"Overall, we integrated microtechnology with neurobiology to find a new engineering solution" continued Professor Nam.


Contact: Michael Bishop
Institute of Physics

Related biology technology :

1. Researchers love triangles
2. JBT Corporation and Swisslog Enter Into Partnership for Automated Guided Vehicles
3. The ABC Clinical Guide to Herbs Now Available Online
4. Neuralstem ALS Stem Cell Trial Featured on Fox Atlanta
5. Neuralstem President and CEO to Update Ongoing ALS and NSI-189/Major Depressive Disorder Trials at 2012 Biotech Showcase
6. Neuralstem President and CEO to Present at BIO CEO & Investor Conference 2012
7. Neuralstem Announces Closing of $5.2-Million Registered Direct Offering
8. Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial
9. Neuralstem CEO to Present at the World Stem Cells and Regenerative Medicine Congress in London
10. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
11. Researchers develop one of the worlds smallest electronic circuits
Post Your Comments:
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading ... the Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio ... and clinical trial team. , Using the CONSULT module, patients and physicians can schedule ...
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
Breaking Biology Technology:
(Date:6/22/2016)... LOS ANGELES , June 22, 2016 ... of identity management and verification solutions, has ... cutting edge software solutions for Visitor Management, ... ® provides products that add functional ... The partnership provides corporations and venues with ...
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
Breaking Biology News(10 mins):