Navigation Links
Triangles guide the way for live neural circuits in a dish
Date:7/19/2012

Korean scientists have used tiny stars, squares and triangles as a toolkit to create live neural circuits in a dish.

They hope the shapes can be used to create a reproducible neural circuit model that could be used for learning and memory studies as well as drug screening applications; the shapes could also be integrated into the latest neural tissue scaffolds to aid the regeneration of neurons at injured sites in the body, such as the spinal cord.

Published today, 20 July, in IOP Publishing's Journal of Neural Engineering, the study, by researchers at the Korea Advanced Institute of Science and Technology (KAIST), found that triangles were the most effective shape for helping to facilitate the growth of axons and guide them onto specific paths to form a complete circuit.

Co-author of the study, Professor Yoonkey Nam, said: "Eventually, we want to know if we can design a neural tissue model that biologically mimics some neural circuits in our brain."

A neuron is an electrically excitable cell that processes and transmits information around the body. The neuron is composed of three main parts: a cell body, or soma, dendrites and an axon, which extends from the soma and links to other cells, creating a network.

When axons grow they are usually guided by proteins. Many researchers have been trying to re-create this key process in a dish by manipulating nerve cells from rat brains.

As nerve cells are usually just a few tens of micrometres in size, the challenge associated with creating a live neural network is firstly positioning cells in desired locations and, secondly, making connections between these cells by guiding the axons in designated directions.

The researchers investigated whether two star shapes, five regular shapes (square, circle, triangle, pentagon and hexagon) and three different sizes of isosceles triangles could guide axons in designated directions. Each shape was the size of a single cell and was replicated to form an array which was printed onto a glass surface.

Each of the arrays had an overall size of 1cm-by-1cm with a gap of 10 micrometres between each shape. Hippocampal neurons were taken from rats and plated onto the patterned surfaces. The neurons were fluorescently labelled with dyes so that images could be taken of their growth.

The researchers found that triangles were the most efficient shape to encourage the growth and guidance of an axon. The key to this was the angles at the points where two of the triangle's lines meet, also known as the vertices. It was shown that the smaller the vertices, the higher chance the triangle had of inducing growth.

"Based on our results, we are suggesting a new design principle for guiding axons in a dish. We can control the axonal growth in a certain direction by putting a sharp triangle pointing to a certain direction. Then, a neuron that adhered to the triangle will have an axon in the sharp vertex direction.

"Overall, we integrated microtechnology with neurobiology to find a new engineering solution" continued Professor Nam.


'/>"/>

Contact: Michael Bishop
michael.bishop@iop.org
44-117-930-1032
Institute of Physics
Source:Eurekalert

Related biology technology :

1. Researchers love triangles
2. JBT Corporation and Swisslog Enter Into Partnership for Automated Guided Vehicles
3. The ABC Clinical Guide to Herbs Now Available Online
4. Neuralstem ALS Stem Cell Trial Featured on Fox Atlanta
5. Neuralstem President and CEO to Update Ongoing ALS and NSI-189/Major Depressive Disorder Trials at 2012 Biotech Showcase
6. Neuralstem President and CEO to Present at BIO CEO & Investor Conference 2012
7. Neuralstem Announces Closing of $5.2-Million Registered Direct Offering
8. Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial
9. Neuralstem CEO to Present at the World Stem Cells and Regenerative Medicine Congress in London
10. UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays
11. Researchers develop one of the worlds smallest electronic circuits
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2017)... ... April 26, 2017 , ... ... high-level conversations among healthcare industry stakeholders, the discussion surrounding the topic will continue ... May 15-18, 2017 in Los Angeles, Calif. Hosted by the Workgroup for Electronic ...
(Date:4/25/2017)... ... April 25, 2017 , ... Franz Inc ... (CL) development tools, and market leader for Semantic Graph Database technology, ... available within the most effective system for developing and deploying applications to solve ...
(Date:4/25/2017)... ... April 25, 2017 , ... Dr. Robert G. ... , proudly announced today that acclaimed physiatrist Matthew Terzella, MD, has joined the ... 2017. , Dr. Terzella completed his residency in Physical Medicine and Rehabilitation at ...
(Date:4/24/2017)... ... April 24, 2017 , ... It is ... cellular milieu; however, the broad application of this cellular target engagement concept to ... quantitative readouts. Cell-based thermal stabilization assays are valuable methods for particular applications, but ...
Breaking Biology Technology:
(Date:4/13/2017)... -- According to a new market research report "Consumer IAM ... and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - Global ... grow from USD 14.30 Billion in 2017 to USD 31.75 Billion by ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
Breaking Biology News(10 mins):