Navigation Links
Trap and zap: Harnessing the power of light to pattern surfaces on the nanoscale
Date:6/18/2008

Princeton engineers have invented an affordable technique that uses lasers and plastic beads to create the ultrasmall features that are needed for new generations of microchips.

The method, which creates lines and dots that are 1,000 times narrower than a human hair, may enable the creation of biological computers as well as micromachines with applications in medicine, optical communications, computing and sensor technologies.

The technique, created by mechanical and aerospace engineering assistant professor Craig Arnold and graduate student Euan McLeod, is similar to poising a magnifying lens over a scrap of paper and angling the lens to focus sunlight and ignite the paper. In place of the lens, the researchers use a microscopic plastic bead floating in water to focus light from a powerful laser and burn designs onto a blank microchip. Their findings are reported online June 8 in the journal Nature Nanotechnology.

While others have passed laser light through various microscopic objects to pattern surfaces, they have struggled to maintain a consistent distance between the bead and the surface of the microchip. If this distance changes, the laser light is focused in different ways across the surface and the resulting pattern is inconsistent. Arnold and McLeod established an innovative way to ensure that the bead is always the same distance from the microchip, which allows them to draw on the surface with high levels of precision.

"One of the biggest challenges in probe-based nanopatterning is regulating the distance between your probe and the surface of the microchip," said Arnold. "We used a special laser to trap the bead and keep it close to the surface without touching it."

The researchers used the technique to "draw" features that were about 100 nanometers (a billionth of a centimeter) in size.

The key innovation is the use of a second, highly focused laser, which points directly down onto the bead. This intense light exerts a physical force on the bead, trapping it in the beam and pushing it down toward the surface. The surface pushes back with a constant force, and the bead settles at a height that balances the opposing forces. The original laser is then pulsed at the bead, which focuses the light to "zap" the surface directly below. By moving the bead along a computer controlled trajectory while repeating the laser pulse, a desired pattern is created.

The technique offers particular advantages on curved or irregular surfaces because the bead tracks the surface, moving up when there is a bump and dropping when it moves over a dip. While other fabrication techniques, such as electron-beam lithography, can also be used to pattern uneven surfaces, they are extremely expensive and must be performed in a vibration- and oxygen-free environment. The new Princeton technique can be performed in a regular environment, making it accessible for use with biological materials and other systems that require the presence of oxygen.

"The technique provides a very interesting new capability to expand laser-assisted nanofabrication without involving moving mechanical parts and related hardware complications," said Costas Grigoropoulos, mechanical engineering professor at University of California-Berkeley. "I do expect that this novel technique will advance nanopatterning since it offers an elegant and highly effective means for parallel, optically driven and controlled nanofabrication."

In addition to burning away parts of a chip, Arnold and McLeod's method has the potential to deposit materials on surfaces, rather like gold-plating. This could provide a new means of creating three-dimensional structures, including miniscule guides that manipulate light and nanoscale electrical-mechanical devices. Such devices have many potential uses in ultrasmall sensor systems and low-power computer processors.

"In the future, we imagine the use of multiple beads of different shapes and sizes -- in essence a nanopatterning toolkit -- for researchers to pick and choose during the course of fabrication," said Arnold. He and McLeod are currently working to pattern a surface using an array of many beads moving in parallel, each trapped and controlled by a different laser beam.


'/>"/>

Contact: Steven Schultz
sschultz@princeton.edu
609-258-3617
Princeton University, Engineering School
Source:Eurekalert  

Related biology technology :

1. BioStorage Technologies Becomes Green Powered through the Use of 100% Certified Renewable Energy
2. Nanowire generates power by harvesting energy from the environment
3. The sensitive side of carbon nanotubes: Creating powerful pressure sensors
4. Move to AMITIZA Advertising Campaign Underscores the Power of Not Letting Chronic Constipation Slow People Down
5. Blue dye could hold the key to super processing power
6. Tethered to chip, energy supply that drives sperm could power nanobot
7. Move over, silicon: Advances pave way for powerful carbon-based electronics
8. EaglePicher Technologies Receives Battery Power Products and Technologys First Annual Innova Award
9. Intrasphere Technologies Releases PharmaCM Submissions Management and Authoring Module Powered by Microsoft Office SharePoint Server 2007
10. Pharmaceutical Budget and Staffing: Powerful New Metrics-Based Study
11. Remarkable new clothing may someday power your iPod
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Trap and zap: Harnessing the power of light to pattern surfaces on the nanoscale
(Date:10/11/2017)... BALTIMORE, Md. (PRWEB) , ... October 11, 2017 ... ... for digital pathology, announced today it will be hosting a Webinar titled, “Pathology ... of  Advanced Pathology Associates , on digital pathology adoption best practices and how ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology ... drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription ... is able to cross the cell membrane and bind intracellular STAT3 and inhibit ...
(Date:10/10/2017)... Oct. 10, 2017 International research firm Parks Associates ... speak at the TMA 2017 Annual Meeting , October 11 in ... the residential home security market and how smart safety and security products ... Parks Associates: Smart ... "The residential security market ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer ... first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With ... with the challenge of how to continue to feed a growing nation. At the ...
Breaking Biology Technology:
(Date:5/16/2017)... DALLAS , May 16, 2017   ... for health organizations, and MD EMR Systems ... certified development partner for GE, have established a ... Patient Portal product and the GE Centricity™ products, ... Centricity EMR. These new integrations ...
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. (NASDAQ: ... announces the filing of its 2016 Annual Report on Form 10-K ... Commission. ... 10-K is available in the Investor Relations section of the Company,s ... the SEC,s website at http://www.sec.gov . 2016 Year ...
(Date:4/11/2017)... No two people are believed to ... York University Tandon School of Engineering and Michigan ... partial similarities between prints are common enough that ... and other electronic devices can be more vulnerable ... in the fact that fingerprint-based authentication systems feature ...
Breaking Biology News(10 mins):