Navigation Links
Trap and zap: Harnessing the power of light to pattern surfaces on the nanoscale
Date:6/18/2008

Princeton engineers have invented an affordable technique that uses lasers and plastic beads to create the ultrasmall features that are needed for new generations of microchips.

The method, which creates lines and dots that are 1,000 times narrower than a human hair, may enable the creation of biological computers as well as micromachines with applications in medicine, optical communications, computing and sensor technologies.

The technique, created by mechanical and aerospace engineering assistant professor Craig Arnold and graduate student Euan McLeod, is similar to poising a magnifying lens over a scrap of paper and angling the lens to focus sunlight and ignite the paper. In place of the lens, the researchers use a microscopic plastic bead floating in water to focus light from a powerful laser and burn designs onto a blank microchip. Their findings are reported online June 8 in the journal Nature Nanotechnology.

While others have passed laser light through various microscopic objects to pattern surfaces, they have struggled to maintain a consistent distance between the bead and the surface of the microchip. If this distance changes, the laser light is focused in different ways across the surface and the resulting pattern is inconsistent. Arnold and McLeod established an innovative way to ensure that the bead is always the same distance from the microchip, which allows them to draw on the surface with high levels of precision.

"One of the biggest challenges in probe-based nanopatterning is regulating the distance between your probe and the surface of the microchip," said Arnold. "We used a special laser to trap the bead and keep it close to the surface without touching it."

The researchers used the technique to "draw" features that were about 100 nanometers (a billionth of a centimeter) in size.

The key innovation is the use of a second, highly focused laser, which points directly down onto the bead. This intense light exerts a physical force on the bead, trapping it in the beam and pushing it down toward the surface. The surface pushes back with a constant force, and the bead settles at a height that balances the opposing forces. The original laser is then pulsed at the bead, which focuses the light to "zap" the surface directly below. By moving the bead along a computer controlled trajectory while repeating the laser pulse, a desired pattern is created.

The technique offers particular advantages on curved or irregular surfaces because the bead tracks the surface, moving up when there is a bump and dropping when it moves over a dip. While other fabrication techniques, such as electron-beam lithography, can also be used to pattern uneven surfaces, they are extremely expensive and must be performed in a vibration- and oxygen-free environment. The new Princeton technique can be performed in a regular environment, making it accessible for use with biological materials and other systems that require the presence of oxygen.

"The technique provides a very interesting new capability to expand laser-assisted nanofabrication without involving moving mechanical parts and related hardware complications," said Costas Grigoropoulos, mechanical engineering professor at University of California-Berkeley. "I do expect that this novel technique will advance nanopatterning since it offers an elegant and highly effective means for parallel, optically driven and controlled nanofabrication."

In addition to burning away parts of a chip, Arnold and McLeod's method has the potential to deposit materials on surfaces, rather like gold-plating. This could provide a new means of creating three-dimensional structures, including miniscule guides that manipulate light and nanoscale electrical-mechanical devices. Such devices have many potential uses in ultrasmall sensor systems and low-power computer processors.

"In the future, we imagine the use of multiple beads of different shapes and sizes -- in essence a nanopatterning toolkit -- for researchers to pick and choose during the course of fabrication," said Arnold. He and McLeod are currently working to pattern a surface using an array of many beads moving in parallel, each trapped and controlled by a different laser beam.


'/>"/>

Contact: Steven Schultz
sschultz@princeton.edu
609-258-3617
Princeton University, Engineering School
Source:Eurekalert  

Related biology technology :

1. BioStorage Technologies Becomes Green Powered through the Use of 100% Certified Renewable Energy
2. Nanowire generates power by harvesting energy from the environment
3. The sensitive side of carbon nanotubes: Creating powerful pressure sensors
4. Move to AMITIZA Advertising Campaign Underscores the Power of Not Letting Chronic Constipation Slow People Down
5. Blue dye could hold the key to super processing power
6. Tethered to chip, energy supply that drives sperm could power nanobot
7. Move over, silicon: Advances pave way for powerful carbon-based electronics
8. EaglePicher Technologies Receives Battery Power Products and Technologys First Annual Innova Award
9. Intrasphere Technologies Releases PharmaCM Submissions Management and Authoring Module Powered by Microsoft Office SharePoint Server 2007
10. Pharmaceutical Budget and Staffing: Powerful New Metrics-Based Study
11. Remarkable new clothing may someday power your iPod
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Trap and zap: Harnessing the power of light to pattern surfaces on the nanoscale
(Date:2/9/2016)... LONDON , February 9, 2016 ... replace paper and protect IP   E-WorkBook ... will be rolled out in Germany ... and protect valuable IP. Users will be able to search ... or experiment as part of the application, to boost collaboration ...
(Date:2/9/2016)... , Feb. 9, 2016 ... Insights, 2016", report provides in depth insights ... activities around the Protein-Tyrosine Phosphatase 1B (PTP1B) ... profiles in various stages of development including ... Phase III and Preregistration. Report covers the ...
(Date:2/8/2016)... 2016  CytRx Corporation (NASDAQ: CYTR ), ... oncology, today announced that it has entered into ... Technology Growth Capital, Inc. and Hercules Technology III, ... --> --> ... financing under the loan and security agreement.  The ...
(Date:2/8/2016)... , ... February 08, 2016 , ... ... of Directors. Todorow is the Executive Vice President for Corporate Services and the ... oversees Finance, Accounts Payable, Payroll, Billing Operations, Treasury, Managed Care Contracting, Supply Chain, ...
Breaking Biology Technology:
(Date:2/2/2016)... 2016 Technology Enhancements Accelerate Growth of X-ray Imaging ... digital and computed radiography markets in Thailand ... Indonesia (TIM). It provides an in-depth ... well as regional market drivers and restraints. The study ... and market attractiveness, both for digital and computed radiography. ...
(Date:2/1/2016)... Fla. , Feb. 1, 2016  Wocket® smart wallet ( www.wocketwallet.com ... and television personality, Joey Fatone . Las Vegas ... greet fans. --> Las Vegas , where ... --> The new video ad was filmed at the Consumer ... appeared at the Wocket booth to meet and greet fans. ...
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
Breaking Biology News(10 mins):