Navigation Links
Touch and movement neurons shape the brain's internal image of the body
Date:8/27/2013

DURHAM, N.C. -- The brain's tactile and motor neurons, which perceive touch and control movement, may also respond to visual cues, according to researchers at Duke Medicine.

The study in monkeys, which appears online Aug. 26, 2013, in the journal Proceedings of the National Academy of Sciences, provides new information on how different areas of the brain may work together in continuously shaping the brain's internal image of the body, also known as the body schema.

The findings have implications for paralyzed individuals using neuroprosthetic limbs, since they suggest that the brain may assimilate neuroprostheses as part of the patient's own body image.

"The study shows for the first time that the somatosensory or touch cortex may be influenced by vision, which goes against everything written in neuroscience textbooks," said senior author Miguel Nicolelis, M.D., PhD, professor of neurobiology at Duke University School of Medicine. "The findings support our theory that the cortex isn't strictly segregated into areas dealing with one function alone, like touch or vision."

Earlier research has shown that the brain has an internal spatial image of the body, which is continuously updated based on touch, pain, temperature and pressure known as the somatosensory system received from skin, joints and muscles, as well as from visual and auditory signals.

An example of this dynamic process is the "rubber hand illusion," a phenomenon in which people develop a sense of ownership of a fake hand when they view it being touched at the same time that something touches their own hand.

In an effort to find a physiological explanation for the "rubber hand illusion," Duke researchers focused on brain activity in the somatosensory and motor cortices of monkeys. These two areas of the brain do not directly receive visual input, but previous work in rats, conducted at the Edmond and Lily Safra International Institute of Neuroscience of Natal in Brazil, theorized that the somatosensory cortex could respond to visual cues.

In the Duke experiment, the two monkeys observed a realistic, computer-generated image of a monkey arm on a screen being touched by a virtual ball. At the same time, the monkeys' arms were touched, triggering a response in their somatosensory and motor cortical areas.

The monkeys then observed the ball touching the virtual arm without anything physically touching their own arms. Within a matter of minutes, the researchers saw the neurons located in the somatosensory and motor cortical areas begin to respond to the virtual arm alone being touched.

The responses to virtual touch occurred 50 to 70 milliseconds later than physical touch, which is consistent with the timing involved in the pathways linking the areas of the brain responsible for processing visual input to the somatosensory and motor cortices. Demonstrating that somatosensory and motor cortical neurons can respond to visual stimuli suggests that cross-functional processing occurs throughout the primate cortex through a highly distributed and dynamic process.

"These findings support our notion that the brain works like a grid or network that is continuously interacting," Nicolelis said. "The cortical areas of the brain are processing multiple streams of information at the same time instead of being segregated as we previously thought."

The research has implications for the future design of neuroprosthetic devices controlled by brain-machine interfaces, which hold promise for restoring motor and somatosensory function to millions of people who suffer from severe levels of body paralysis. Creating neuroprostheses that become fully incorporated in the brain's sensory and motor circuitry could allow the devices to be integrated into the brain's internal image of the body. Nicolelis said he is incorporating the findings into the Walk Again Project, an international collaboration working to build a brain-controlled neuroprosthetic device. The Walk Again Project plans to demonstrate its first brain-controlled exoskeleton during the opening ceremony of the 2014 FIFA Football World Cup.

"As we become proficient in using tools a violin, tennis racquet, computer mouse, or prosthetic limb our brain is likely changing its internal image of our bodies to incorporate the tools as extensions of ourselves," Nicolelis said.


'/>"/>

Contact: Press Office
lynn.garner@duke.edu
919-660-1306
Duke University Medical Center
Source:Eurekalert

Related biology technology :

1. Light touch keeps a grip on delicate nanoparticles
2. A new take on the Midas touch -- changing the color of gold
3. Touch Medical Media Splits From Touch Briefings, Launches a Series of Cutting Edge, Free to Access, Educational Resources and Signs an Updated Media Partnership With ECCO, The European CanCer Organisation Representing 60,000 Oncology Professionals
4. Brain-activated muscle stimulation restores monkeys hand movement after paralysis
5. Rhythmic firing of nerve cells involved in bodys movements
6. Scientists design, control movements of molecular motor
7. Bend, Twist, Pose – Kitware’s Bender Brings Movement to the Visible Man
8. Hurel Corporation Launches Cell-Based In Vitro Testing Product Suite, Milestone in Movement Away from Use of Live Animals in Drug and Toxicity Testing
9. New method for producing precursor of neurons, bone and other important tissues from stem cells
10. Implanted neurons, grown in the lab, take charge of brain circuitry
11. Cellular Dynamics Announces Commercial Launch of iCell® Neurons for Neuroscience Drug Discovery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... 22, 2017 Oramed Pharmaceuticals Inc. (NASDAQ: ... www.oramed.com ), a clinical-stage pharmaceutical company ... systems, announced today that Dr. Miriam Kidron ... presentation titled, "Oral Insulin for Diabetes Treatment: Bypassing ... Institute,s Oligonucleotide and Peptide Therapeutics (OPT) Boston Conference in ...
(Date:3/22/2017)... Florida , March 22, 2017 ... ... various cancer conditions are being pressured as of late due ... for cancer pain management has a dramatic impact on patient,s ... research and development activities for identifying new forms of opioid ...
(Date:3/22/2017)... Pa. , March 22, 2017 /PRNewswire/ ... global independent provider of product and service ... today that it has acquired EPL Archives, ... supports customers across the entire regulated product ... archive sample, document storage and ancillary services. ...
(Date:3/22/2017)... Yorba Linda, Ca (PRWEB) , ... March 21, ... ... immunogenicity, and clearance of biologics. To acquire information on the desired increase and/or ... in the biopharmaceutical industry for rapid N-glycosylation profiling of therapeutic antibodies. , ...
Breaking Biology Technology:
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
(Date:3/22/2017)... Optimove , provider of the ... as 1-800-Flowers and AdoreMe, today announced two new ... Using Optimove,s machine learning algorithms, these features allow ... recommendations to their customers based not just on ... intent drawn from a complex web of data ...
(Date:3/22/2017)... 2017 Vigilant Solutions , a vehicle ... agencies, announced today the appointment of retired FBI special ... safety business development. Mr. Sheridan brings more ... a focus on the aviation transportation sector, to his ... Mr. Sheridan served as the Aviation Liaison Agent Coordinator ...
Breaking Biology News(10 mins):