Navigation Links
Tiny 'Lego brick'-style studs make solar panels a quarter more efficient
Date:10/19/2013

Rows of aluminum studs help solar panels extract more energy from sunlight than those with flat surfaces.

Most solar cells used in homes and industry are made using thick layers of material to absorb sunlight, but have been limited in the past by relatively high costs. Many new, lower cost designs are limited as their layer of light-absorbing material is too thin to extract enough energy.

In new research, scientists have demonstrated that the efficiency of all solar panel designs could be improved by up to 22 per cent by covering their surface with aluminum studs that bend and trap light inside the absorbing layer.

At the microscopic level, the studs make the solar panels look similar to the interlocking LEGO building bricks played with by children across the world.

The study is published in the journal Scientific Reports by scientists from Imperial College London and international collaborators in Belgium, China and Japan.

"In recent years both the efficiency and cost of commercial solar panels have improved but they remain expensive compared to fossil fuels. As the absorbing material alone can make up half the cost of a solar panel our aim has been to reduce to a minimum the amount that is needed," said lead author Dr Nicholas Hylton from the Department of Physics at Imperial College London.

"The success of our technology, in combination with modern anti-reflection coatings, will take us a long way down the path towards highly efficient and thin solar cells that could be available at a competitive price."

Dr Hylton and his colleagues attached rows of aluminum cylinders just 100 nanometres across to the top of the solar panel, where they interact with passing light, causing individual light rays to change course. More energy is extracted from the light as the rays become effectively trapped inside the solar panel and travel for longer distances through its absorbing layer.

In the past scientists have tried to achieve the light bending effect using silver and gold studs because those materials are known to strongly interact with light, however these precious metals actually reduce the efficiency as they absorb some of the light before it enters the solar panel.

"The key to understanding these new results is in the way the internal structures of these metals interact with light. Gold and silver both have a strong effect on passing light rays, which can penetrate into the tiny studs and be absorbed, whereas aluminum has a different interaction and merely bends and scatters light as it travels past them into the solar cells."

An additional advantage to this solution is that aluminum is cheaper and far more abundant than silver and gold.

The future success of this technology opens up the possibility of making flexible solar panels that could be applied to any flat or curved surface, which could be used to power everything from domestic appliances to portable electronics like laptops.


'/>"/>

Contact: Simon Levey
s.levey@imperial.ac.uk
44-020-759-46702
Imperial College London
Source:Eurekalert  

Related biology technology :

1. Soft Lego built in the computer
2. Croda Inc Unveils $2.3 Million Investment in Solar
3. New nanoparticles make solar cells cheaper to manufacture
4. Lawrence Livermore engineering team makes breakthrough in solar energy research
5. NREL reports 31.1 percent efficiency for III-V solar cell
6. Switzerland’s MS Tûranor PlanetSolar, the World’s Largest Solar Boat, Arrives in New York City
7. MS Tûranor PlanetSolar Sets World Speed Record for Transatlantic Crossing by Solar Electric Vessel
8. NREL and Stanford team up on peel-and-stick solar cells
9. Nanowires have the power to revolutionize solar energy
10. Nuanced Media: Custom Solar and Leisure to Showcase Products, Services at SAHBA Home & Patio Show
11. New type of solar structure cools buildings in full sunlight
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Tiny 'Lego brick'-style studs make solar panels a quarter more efficient
(Date:5/26/2017)... ... May 25, 2017 , ... Throughout this webinar, participants ... how process development and economic goals were achieved in both industry and academic ... bioreactor system, along with techniques for scaling production of mesenchymal stem cells (MSCs) ...
(Date:5/24/2017)... LITTLETON, MA. (PRWEB) , ... ... ... Incorporated, the Northeast's premier provider of high quality relocatable and permanent modular ... space combines visual management tools and modern office design characteristics to help ...
(Date:5/23/2017)... ... , ... A recent survey conducted by the Weed Science Society of America ... 12 categories of broadleaf crops, fruits and vegetables, while common lambsquarters ranks as the ... participated in the 2016 survey, the second conducted by WSSA. A 2015 baseline ...
(Date:5/23/2017)... PARK, CA (PRWEB) , ... May 23, 2017 , ... ... the publication of “Label-free isolation of prostate circulating tumor cells using Vortex microfluidic ... is the result of a collaboration with Dr. Dino Di Carlo and Dr. Matthew ...
Breaking Biology Technology:
(Date:4/11/2017)... Apr. 11, 2017 Research and Markets has ... report to their offering. ... The global eye tracking market to grow at a CAGR of ... Eye Tracking Market 2017-2021, has been prepared based on an in-depth ... market landscape and its growth prospects over the coming years. The ...
(Date:4/5/2017)... , April 5, 2017 Today ... announcing that the server component of the HYPR platform ... for providing the end-to-end security architecture that empowers biometric ... HYPR has already secured over 15 million users ... including manufacturers of connected home product suites and physical ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
Breaking Biology News(10 mins):