Navigation Links
The quantum world only partially melts
Date:9/6/2012

Every day we observe systems thermalizing: Ice cubes in a pot of hot water will melt and will never remain stable. The molecules of the ice and the molecules of the water will reach thermal equilibrium, ending up at the same temperature. Well-ordered ice crystals turn into a disordered liquid.

Experiments at the Vienna Center for Quantum Science and Technology (VCQ) at the Vienna University of Technology have shown that in the quantum world the transition to thermal equilibrium is more interesting and more complicated than assumed so far.

Between an ordered initial state and a statistically mixed final state, a so-called "quasi-stationary intermediate state" can emerge. This intermediate state already exhibits some equilibrium like properties, but some of the distinct order of the initial state remains visible for a remarkably long time.

This phenomenon is called "pre-thermalization". Pre-thermalization is predicted to play a major role in many different non-equilibrium processes in quantum physics. It could, for example, help us to understand the state of the early universe.

Ultracold Atom Clouds

"In our experiments we start with a one-dimensional quantum gas of ultracold atoms, a so-called Bose-Einstein condensate, which is then rapidly split into two using an atomchip", Professor Jrg Schmiedmayer (Vienna University of Technology) explains. When the two parts of the condensate are immediately rejoined, they create an ordered matter-wave interference pattern. "The shape of this interference pattern shows us that the two clouds have not yet forgotten that they originally came from the same atom cloud", says Jrg Schmiedmayer.

Novel State between Order and Equilibrium

After some time, the split atom cloud is expected to tend towards thermal equilibrium. As more time is allowed to pass before the two halves of the system are rejoined, the order seen in the interference patterns decays. "The astonishing thing about this is that the order does not directly reach a minimum. First, it decays rapidly, but then it remains in an intermediate state the so-called pre-thermalized state", says Michael Gring (Vienna University of Technology).

Jrg Schmiedmayer's research group has been working on these experiments for several years. "At first, it was not clear how to interpret this phenomenon. The experiments had to be improved and the corresponding theory needed further development", says Schmiedmayer. In close cooperation with Professor Eugene Demler's theory group at Harvard University the surprising results could now be explained. "The observed disorder in the intermediate state does not depend on the temperature of the initial state. It is introduced into the system by the laws of quantum physics when the atom cloud is split into two", Schmiedmayer says.

Quantum Physics Far From Equilibrium

The transition of systems to thermal equilibrium is important in many fields of quantum physics after all, a quantum experiment can never be done at exactly zero temperature. Therefore, scientists always have to deal with temperature effects.

Carrying out calculations or storing data in a quantum computer inevitably creates non-equilibrium states, which (much like an ice cube in hot water) tends towards a thermal equilibrium, destroying the quantum state.

Learning from Ultracold Atom Clouds to Understand the Early Universe?

The novel intermediate state could also be interesting for the physics of quark-gluon plasma. Fractions of a second after the Big Bang, all the matter in the universe was in a non-equilibrium state of quark-gluon plasma. Today, quark-gluon plasma is created in large particle colliders. These plasma experiments showed that certain aspects of the plasma tend towards a thermal equilibrium much faster than one would have assumed. To explain this, "Pre-Thermalization" was postulated in a theoretical framework developed at Heidelberg University. Scientists speculate that this could be linked to an intermediate state, similar to the one discovered in the ultracold atom clouds at the Vienna University of Technology.

The processes associated with the decay of a quantum system to thermal equilibrium could also tell us more about the relationship between quantum physics and the classical macroscopic world. "Our atom clouds offer us the possibility to study the fascinating crossover from non-equilibrium states towards thermal equilibrium in detail", says Jrg Schmiedmayer. "That way, we hope to achieve a deeper understanding of non-equilibrium processes, which are omnipresent in nature."

For the experiment, a special kind of atom chip was created at the The Center for Micro- and Nanostructures (ZMNS) at the Vienna University of Technology.


'/>"/>

Contact: Florian Aigner
florian.aigner@tuwien.ac.at
0043-158-801-41027
Vienna University of Technology
Source:Eurekalert  

Related biology technology :

1. Imprisoned molecules quantum rattle in their cages
2. Nature: Electronic read-out of quantum bits
3. Quantum physics: New insights into the remote control of quantum systems
4. UK research paves way to a scalable device for quantum information processing
5. Researchers tune the strain in graphene drumheads to create quantum dots
6. Quantum bar magnets in a transparent salt
7. Metamaterials, quantum dots show promise for new technologies
8. En route to a quantum computer
9. Quantum dots brighten the future of lighting
10. Raising the prospects for quantum levitation
11. Quantum computer built inside a diamond
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The quantum world only partially melts
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is exhibiting at the Pennsylvania Convention Center and will showcase its product’s latest ... ClinCapture will also be presenting a scientific poster on Disrupting Clinical Trials in ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... new line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC ... in Chicago. The result of a collaboration among several companies with expertise in ...
(Date:6/23/2016)... 2016 ReportsnReports.com adds 2016 ... its pharmaceuticals section with historic and forecast data ... more. Complete report on the Cell ... 15 companies and supported with 261 tables and ... . The Global Cell Culture Media ...
(Date:6/22/2016)... 22, 2016 Research and Markets has announced ... report to their offering. ... from $29.3 billion in 2013. The market is expected to grow ... 2015 to 2020, increasing from $50.6 billion in 2015 to $96.6 ... during the forecast period (2015 to 2020) are discussed. As well, ...
Breaking Biology Technology:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/14/2016)... 2016 BioCatch ™, the ... announced the appointment of Eyal Goldwerger as ... Goldwerger,s leadership appointment comes at a time of ... deployment of its platform at several of the world,s ... discerns unique cognitive and physiological factors, is a winner ...
Breaking Biology News(10 mins):