Navigation Links
The power to heal at the tips of your fingers
Date:8/9/2012

The intricate properties of the fingertips have been mimicked and recreated using semiconductor devices in what researchers hope will lead to the development of advanced surgical gloves.

The devices, shown to be capable of responding with high precision to the stresses and strains associated with touch and finger movement, are a step towards the creation of surgical gloves for use in medical procedures such as local ablations and ultrasound scans.

Researchers from the University of Illinois at Urbana-Champaign, Northwestern University and Dalian University of Technology have published their study today, Friday 10 August, in IOP Publishing's journal Nanotechnology.

Offering guidelines to the creation of these electrotactile stimulation devices for use on surgeons' fingertips, their paper describes the materials, fabrication strategies and device designs, using ultrathin, stretchable, silicon-based electronics and soft sensors that can be mounted onto an artificial 'skin' and fitted to fingertips.

"Imagine the ability to sense the electrical properties of tissue, and then locally remove that tissue, precisely by local ablation, all via the fingertips using smart surgical gloves. Alternatively, or perhaps in addition, ultrasound imaging could be possible," said co-author of the study Professor John Rogers.

The researchers suggest that the new technology could open up possibilities for surgical robots that can interact, in a soft contacting mode, with their surroundings through touch.

The electronic circuit on the 'skin' is made of patterns of gold conductive lines and ultrathin sheets of silicon, integrated onto a flexible polymer called polyimide. The sheet is then etched into an open mesh geometry and transferred to a thin sheet of silicone rubber moulded into the precise shape of a finger.

This electronic 'skin', or finger cuff, was designed to measure the stresses and strains at the fingertip by measuring the change in capacitance the ability to store electrical charge of pairs of microelectrodes in the circuit. Applied forces decreased the spacing in the skin which, in turn, increased the capacitance.

The fingertip device could also be fitted with sensors for measuring motion and temperature, with small-scale heaters as actuators for ablation and other related operations

The researchers experimented with having the electronics on the inside of the device, in contact with wearer's skin, and also on the outside. They believe that because the device exploits materials and fabrication techniques adopted from the established semiconductor industry, the processes can be scaled for realistic use at reasonable cost.

"Perhaps the most important result is that we are able to incorporate multifunctional, silicon semiconductor device technologies into the form of soft, three-dimensional, form-fitting skins, suitable for integration not only with the fingertips but also other parts of the body," continued Professor Rogers.

Indeed, the researchers now intend to create a 'skin' for integration on other parts of the body, such as the heart. In this case, a device would envelop the entire 3D surface of the heart, like a sock, to provide various sensing and actuating functions, providing advanced surgical and diagnostic devices relevant to cardiac arrhythmias.

Future challenges include creating materials and schemes to provide the device with wireless data and power.


'/>"/>
Contact: Michael Bishop
michael.bishop@iop.org
01-179-301-032
Institute of Physics
Source:Eurekalert

Related biology technology :

1. Wireless power for the price of a penny
2. BioPower Operations Corporation Announces that FTZ Exchange Signs Strategic Alliance with Capacity 360, LLC and Tom Settineri
3. Unique properties of graphene lead to a new paradigm for low-power telecommunications
4. UCLA-led research team develops worlds most powerful nanoscale microwave oscillators
5. Syracuse University researchers use nanotechnology to harness power of fireflies
6. U of S researchers create powerful new tool for research and drug development
7. MO BIO Laboratories, Inc. Launches the PowerMicrobiome™ RNA Isolation Kit
8. Jellyfish inspires latest ocean-powered robot
9. Tiny fractal trees for solar power
10. Thomson Reuters Cortellis Drives Drug Discovery and Development With Powerful New Web Services
11. ValGenesis Suite 2.5 Certified by SAP as Powered by SAP NetWeaver®
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/5/2016)... ... December 05, 2016 , ... In anticipation of ... lumbar disc production, company President, Jake Lubinski will be traveling to Germany on ... disc in Cologne and Karlsruhe to discuss the benefits of a viscoelastic total ...
(Date:12/5/2016)... WOODCLIFF LAKE, N.J. , Dec. 5, 2016 ... its Phase 3 open-label two-year study of rufinamide, ... of the American Epilepsy Society (AES) held from ... . Analysis of final two-year safety, tolerability and ... therapy with rufinamide experienced similar safety and tolerability ...
(Date:12/4/2016)... DIEGO , Dec. 3, 2016  In five ... of Hematology (ASH) Annual Meeting and Exposition in ... biomedical engineering methods to improve the delivery of life-saving ... These new methods are designed to carry therapies directly ... needed most, which could provide a substantial advantage over ...
(Date:12/2/2016)... Amgen (NASDAQ: AMGN ) and Allergan ... of a Marketing Authorization Application (MAA) to the European Medicines ... ® (bevacizumab). The companies believe this submission is the ... "The submission of ABP 215 to the EMA is ... portfolio," said Sean E. Harper , M.D., executive vice ...
Breaking Biology Technology:
(Date:11/17/2016)... , Nov. 17, 2016  AIC announces that it has just released a new ... that require high-performance scale-out plus high speed data transfer storage solutions. Photo ... ... ... Setting up a high performance computing ...
(Date:11/15/2016)... Nov 15, 2016 Research and Markets has ... to 2021" report to their offering. ... ... Billion by 2021 from USD 6.21 Billion in 2016, growing at ... Growth of the bioinformatics market is driven by the growing demand ...
(Date:6/27/2016)... 27, 2016 Research and Markets has announced ... report to their offering. ... to grow at a CAGR of 12.28% during the ... on an in-depth market analysis with inputs from industry experts. The ... coming years. The report also includes a discussion of the key ...
Breaking Biology News(10 mins):