Navigation Links
Texas A&M professor helps develop first high-temp spin-field-effect transistor
Date:12/23/2010

COLLEGE STATION, Dec. 23, 2010 An international team of researchers featuring Texas A&M University physicist Jairo Sinova has announced a breakthrough that gives a new spin to semiconductor nanoelectronics and the world of information technology.

The team has developed an electrically controllable device whose functionality is based on an electron's spin. Their results, the culmination of a 20-year scientific quest involving many international researchers and groups, are published in the current issue of Science.

The team, which also includes researchers from the Hitachi Cambridge Laboratory and the Universities of Cambridge and Nottingham in the United Kingdom as well as the Academy of Sciences and Charles University in the Czech Republic, is the first to combine the spin-helix state and anomalous Hall effect to create a realistic spin-field-effect transistor (FET) operable at high temperatures, complete with an AND-gate logic device the first such realization in the type of transistors originally proposed by Purdue University's Supriyo Datta and Biswajit Das in 1989.

"One of the major stumbling blocks was that to manipulate spin, one may also destroy it," Sinova explains. "It has only recently been realized that one could manipulate it without destroying it by choosing a particular set-up for the device and manipulating the material. One also has to detect it without destroying it, which we were able to do by exploiting our findings from our study of the spin Hall effect six years ago. It is the combination of these basic physics research projects that has given rise to the first spin-FET."

Sixty years after the transistor's discovery, its operation is still based on the same physical principles of electrical manipulation and detection of electronic charges in a semiconductor, says Hitachi's Dr. Jorg Wunderlich, senior researcher in the team. He says subsequent technology has focused on down-scaling the device size, succeeding to the point where we are approaching the ultimate limit, shifting the focus to establishing new physical principles of operation to overcome these limits specifically, using its elementary magnetic movement, or so-called "spin," as the logic variable instead of the charge.

This new approach constitutes the field of "spintronics," which promises potential advances in low-power electronics, hybrid electronic-magnetic systems and completely new functionalities.

Wunderlich says the 20-year-old theory of electrical manipulation and detection of electron's spin in semiconductors the cornerstone of which is the "holy grail" known as the spin transistor has proven to be unexpectedly difficult to experimentally realize.

"We used recently discovered quantum-relativistic phenomena for both spin manipulation and detection to realize and confirm all the principal phenomena of the spin transistor concept," Wunderlich explains.

To observe the electrical manipulation and detection of spins, the team made a specially designed planar photo-diode (as opposed to the typically used circularly polarized light source) placed next to the transistor channel. By shining light on the diode, they injected photo-excited electrons, rather than the customary spin-polarized electrons, into the transistor channel. Voltages were applied to input-gate electrodes to control the procession of spins via quantum-relativistic effects. These effects attributable to quantum relativity are also responsible for the onset of transverse electrical voltages in the device, which represent the output signal, dependent on the local orientation of processing electron spins in the transistor channel.

The new device can have a broad range of applications in spintronics research as an efficient tool for manipulating and detecting spins in semiconductors without disturbing the spin-polarized current or using magnetic elements.

Wunderlich notes the observed output electrical signals remain large at high temperatures and are linearly dependent on the degree of circular polarization of the incident light. The device therefore represents a realization of an electrically controllable solid-state polarimeter which directly converts polarization of light into electric voltage signals. He says future applications may exploit the device to detect the content of chiral molecules in solutions, for example, to measure the blood-sugar levels of patients or the sugar content of wine.

This work forms part of wider spintronics activity within Hitachi worldwide, which expects to develop new functionalities for use in fields as diverse as energy transfer, high-speed secure communications and various forms of sensor.

While Wunderlich acknowledges it is yet to be determined whether or not spin-based devices will become a viable alternative to or complement of their standard electron-charge-based counterparts in current information-processing devices, he says his team's discovery has shifted the focus from the theoretical academic speculation to prototype microelectronic device development.

"For spintronics to revolutionize information technology, one needs a further step of creating a spin amplifier," Sinova says. "For now, the device aspect the ability to inject, manipulate and create a logic step with spin alone has been achieved, and I am happy that Texas A&M University is a part of that accomplishment."


'/>"/>

Contact: Jairo Sinova
sinova@physics.tamu.edu
979-845-4179
Texas A&M University
Source:Eurekalert

Related biology technology :

1. Texas Biotech Firms Receive More Than $35 Million in Federal Grants and Credits
2. Texas A&M chemical engineers work could lead to improved DNA analysis
3. Texas A&M veterinary researchers achieve cloning first
4. Texas Tech, U of Utah win Sandia microdevice competition
5. Texas Teen Opts for Stem Cell Therapy, Hopes of Enlisting in Military
6. $250,000 Awarded to Smartfield, Inc. of Lubbock, TX by the Texas Emerging Technology Fund
7. Texas-Based Consortium Announces Project GreenVax: A Groundbreaking Vaccine Manufacturing Research Program
8. UH Superconductivity Center Receives Texas Emerging Technology Fund Award
9. WaferGen Announces that University of Texas Southwestern Medical Center Demonstrates Utility of New SmartChip(TM) Nano-Dispenser with WaferGens SmartChip(TM) High-throughput Real-Time PCR System
10. Texas State University Prepares for Phase 2 Research on the Potential New Cancer and HIV Fighting ALKA-V6 Compound
11. SRA International Wins $16 Million Contract from Cancer Prevention and Research Institute of Texas
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/25/2016)... CITY, UTAH. (PRWEB) , ... May 25, 2016 , ... ... in healthcare information exchange, today announced that Charles W. Stellar has been named by ... WEDI’s interim CEO since January 2016. As an executive leader with more than 35 ...
(Date:5/25/2016)... ... May 25, 2016 , ... Biohaven Pharmaceutical Holding ... has granted the company’s orphan drug designation request covering BHV-4157 for the treatment ... by the FDA. , Spinocerebellar ataxia is a rare, debilitating neurodegenerative disorder ...
(Date:5/24/2016)... Israel , May 24, 2016   MedyMatch Technology ... physicians with artificial intelligence, real-time decision support tools in the ... present at the 2016 Israeli Advanced Technology Industries (IATI) BioMed ... Israel,s 15th National Life Sciences and ... at the David Intercontinental Hotel in Tel Aviv, ...
(Date:5/24/2016)... Maryland (PRWEB) , ... May 24, 2016 , ... ... of a newly re-branded identity. The new Media Cybernetics corporate branding reflects a ... world of imaging and image analysis. The re-branding components include a crisp, refreshed ...
Breaking Biology Technology:
(Date:3/14/2016)... March 14, 2016 http://www.apimages.com ... --> - Renvoi : image disponible via ... --> --> DERMALOG, le ... de nouveaux lecteurs d,empreintes digitales pour l,enregistrement des ... sera utilisé pour produire des cartes d,identité aux ...
(Date:3/11/2016)... --> --> ... Recognition Market by Technology (Pattern Recognition), by Component (Hardware, ... Type (On-Premises and Cloud), by Industry Vertical and by ... the global market is expected to grow from USD ... 2020, at a CAGR of 19.1%. , ...
(Date:3/10/2016)... , March 10, 2016   Unisys Corporation (NYSE: ... Border Protection (CBP) is testing its biometric identity solution ... Diego to help identify certain non-U.S. citizens leaving ... The test, designed to help determine the efficiency and accuracy ... in February and will run until May 2016. --> ...
Breaking Biology News(10 mins):