Navigation Links
Tests show LLNL detection instrument can monitor the air for all major terrorist threat substances
Date:8/10/2008

Security and law enforcement officials may some day have a new ally - a universal detection system that can monitor the air for virtually all of the major threat agents that could be used by terrorists.

This type of system is under development by a team of Lawrence Livermore National Laboratory (LLNL) scientists and engineers, and has already been tested in laboratory and field experiments.

In their latest advance, the team has conceptually shown that they can almost simultaneously detect four potential threat materials - biological, chemical, explosives and radiological - along with illicit drugs.

Their work, using a system called Single-Particle Aerosol Mass Spectrometry, or SPAMS, is described in the June 15 edition of Analytical Chemistry, a semi-monthly journal published by the American Chemical Society.

"We believe SPAMS is the only detection instrument that can autonomously detect multiple types of threat agents and trigger alarms within less than a minute," said Matthias Frank, an LLNL physicist and one of the paper's co-authors.

"What sets this work apart," Frank explained, "is that we did our experiments with all these types of threat agents within minutes of each other without reconfiguring the SPAMS instrument." (In some cases, surrogate materials were used.)

Last spring, the researchers announced that their instrument could perform as a three-in-one detection machine, monitoring the air for biological, chemical and explosive agents.

Since then, the Livermore team has added the capabilities of detecting illicit drugs and powders from radioactive metals. They developed the software capability to assist in detecting metal powders and the algorithms to help detect all four threat agents at one time.

The paper's lead author, LLNL physicist Paul Steele, notes that three factors are particularly important in developing a detection machine like SPAMS: sensitivity, false alarm rate and response time.

"What we have accomplished," Steele said, "is to make an instrument that is very sensitive, with a very low false alarm rate, but very fast. That's unique. Other systems that are just as fast and sensitive have higher false alarm rates."

Besides Frank and Steele, other researchers on the SPAMS team include chemists Eric Gard, David Fergenson, Keith Coffee and George Farquar; forensic chemist and graduate student Audrey Martin; microbiologist Sue Martin; and electronics engineer Vincent Riot.

In lab experiments, SPAMS was tested against four types of materials terrorists might use -- spores of a non-pathogenic strain of Bacillus anthracis (other strains of this bacteria cause anthrax); diethyl phthalate (a nerve agent surrogate), natural cobalt powder (a surrogate for Cobalt 60 and other radioactive metals) and trinitro-1,3,5-triazinane (RDX, a high explosive). Additionally, it was tested against pseudoephedrine (used to synthesize methamphetamine).

In single- and multiple-agent tests, SPAMS accurately identified each substance and set off the correct alarms within an average of 34 seconds after their release against a background of air as the system was open to the environment. All of the measurements were achieved within 26 to 46 seconds after the compounds' release.

The two multiple-agent tests involved the use of natural cobalt powder and RDX, and a non-pathogenic strain of Bacillus anthracis and RDX.

In field experiments, SPAMS has been tested at San Francisco International Airport. As part of a background study, the mass spectrometry system analyzed the air for about seven weeks in 2004-05, recording data, though it lacked the capability to set off alarms. The system records were later analyzed in the lab to evaluate whether any alarms, false or real, would have been triggered.

The researchers determined that while a few particles showed up as spores among the almost one million particles studied, there were so few that no alarms would have been triggered.

"What distinguishes SPAMS from other instruments is the high-quality information we receive from the instrument in the form of single-particle mass spectra," Frank said. "As a result, we get specificity and many fewer false alarms. We're very enthusiastic about how the system is working, not only in the lab but also in field tests."

For the future, the Livermore team would like to develop ways to make the SPAMS machine smaller and less expensive.

They would like to find opportunities for additional field tests, such as at airports, where SPAMS could be used to screen checked and carry-on baggage and at passenger portals. The instrument also could assist in screening people for disease and might help law enforcement authorities in examining suspicious powder samples.


'/>"/>

Contact: Steve Wampler
wampler1@llnl.ogv
925-423-3107
DOE/Lawrence Livermore National Laboratory
Source:Eurekalert

Related biology technology :

1. BioReliance Corporation Launches iNet(TM) for Online Results Tracking of Biological Safety Tests
2. EpiStem Successfully Complete First Year of Mucositis Tests for NIH Biodefence Programme
3. Researchers underscore limitations of genetic ancestry tests
4. Glycominds and Fox Chase Cancer Center Announce a Collaboration to Discover New Cancer Detection Diagnostic Tests
5. ANX-514 Reduces Hypersensitivity Reactions Without Impacting Pharmacokinetics or Antitumor Activity in Preclinical Tests
6. Kiwa Fertilizers Pass Independent Tests
7. Vermillion and Johns Hopkins Sign Collaborative Research and License Agreements to Develop Molecular Diagnostic Tests
8. Data Presented on Monogram HIV Tropism Tests at Retrovirus Conference sets New Standards of Assay Sensitivity
9. Center for Molecular Medicine Partners with AviaraDx to Offer New Cancer Tests to Aid Physicians in Personalizing Treatment
10. Agendia and Agilent Announce Plans to Jointly Develop New Diagnostic Tests, Extend Supply Agreement
11. Genetic Testing for All: QTrait Offers Industrys Least Expensive, Most Secure DNA Tests With TRUSTe Certification
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)...  Sequenom, Inc. (NASDAQ: SQNM ), a ... the development of innovative products and services, announced today ... States denied its petition to review decisions ... U.S. Patent No. 6,258,540 (",540 Patent") are not patent ... Supreme Court,s Mayo Collaborative Services v. Prometheus Laboratories decision.  ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf ... join the faculty of the University of North Carolina Kenan-Flagler Business School ... and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is pleased to announce the launch of their brand, UP4™ Probiotics, into Target ... over 35 years, is proud to add Target to its list of well-respected ...
Breaking Biology Technology:
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
(Date:3/23/2016)... WAKEFIELD, Massachusetts , March 23, 2016 ... kombiniert im Interesse erhöhter Sicherheit Gesichts- und ... Xura, Inc. (NASDAQ: MESG ... heute bekannt, dass das Unternehmen mit SpeechPro ... insbesondere aus der Finanzdienstleistungsbranche, wird die Möglichkeit ...
(Date:3/21/2016)... 2016 Unique technology combines ... superior security   Xura, Inc. ... secure digital communications services, today announced it is working ... enterprise customers, particularly those in the Financial Services Sector, ... authentication within a mobile app, alongside, and in combination ...
Breaking Biology News(10 mins):