Navigation Links
Technique for Creating Authentic Rat Embryonic Stem Cells Published in Cell
Date:12/29/2008

CAMBRIDGE, England, December 29 /PRNewswire-FirstCall/ --

- Technology Licensed Exclusively by Stem Cell Sciences

- ("Stem Cell Sciences", "SCS", "the Company")

Stem Cell Sciences plc (AIM:STEM, ASX:STC) is pleased to announce that pioneering research describing a technique for creating authentic embryonic stem (ES) cells from rats has been published in the prestigious peer-reviewed journal, Cell (Ref. 1). This publication is believed to be the first in which germ-line transmission from rat ES cells has been definitively demonstrated. It uses technology licensed exclusively to SCS from the University of Edinburgh and developed by Professor Austin Smith and his team, now at Cambridge University. The technique is expected to allow the generation of consistently pure and stable rat ES cells, from which drug discovery assays as well as genetically modified animals can be created for academic, medical and pharmaceutical research.

The rat has been a hugely important organism in medical research and drug discovery over the past 100 years, during which time a large body of information on rat models of disease has been generated. Physiological processes and metabolic functions in the rat more closely mimic those of the human than do other model organisms such as the mouse and as a result the rat is regarded as the gold standard for studying the effects of drugs in the body. However, further studies such as defining drug action or the genetic basis of disease using rats have been hindered by the lack of sophisticated, precision genetic engineering, such as that achievable via ES cells in mice. Such barriers have now been overcome; by applying specific cell culture conditions, authentic rat ES cells can be made which can be precision engineered and then used to generate a completely novel range of rat models.

The main advantage afforded by this technology is that it allows the generation of both knock-out rat models, in which the effect of gene deletion is studied, as well as the generation of knock-in models, which involves the insertion of genes, perhaps human genes, in a precisely defined manner. For example, in the case of knock-out models, a lack of response or different response profile to drugs compared with non-engineered animals can provide information on drug efficacy. Alternatively, the insertion of genes such as those involved in drug metabolism in the human liver means that knock-in models can provide information on drug safety & metabolism. Under the terms of its agreement with Edinburgh University, SCS has global exclusive rights to commercialise pluripotent rat stem cells, the specific culture medium used to generate and grow the cells, and rats derived therefrom.

Dr Alastair Riddell, Chief Executive Officer of Stem Cell Sciences, said, "The impact of this new technique could be far-reaching in terms of opening the way to new and more effective drug discovery. Rat models are expected to be highly predictive of human responses to drugs, particularly for in psychiatric, neurological and cardiovascular areas. With this new technique allowing researchers to knock-in human genes it will be possible to conduct drug metabolism and toxicology studies with even higher predictability in rats than ever before. We expect there to be considerable commercial interest from companies wanting to access this exciting technology."

Reference

(1.) Buehr et al., Capture of Authentic Embryonic Stem Cells from Rat Blastocysts, Cell (2008), doi:10.1016/j.cell.2008.12.007

About Stem Cell Sciences plc

Stem Cell Sciences (SCS) is an international research and development company focusing on the commercial application of stem cell biology technologies for drug discovery and regenerative medicine research. Stem Cell Sciences is now focussing on building revenues through the sale of products, collaborative research and licensing deals with international biotechnology and pharmaceutical companies.

Stem Cell Sciences has a substantial portfolio of patents and patent applications in both adult and embryonic stem cell fields. The Company has been active in the stem cell research field since 1994, principally focused on technologies to grow, differentiate, and purify adult and embryonic stem cells. These include technologies to permit the generation of highly purified stem cells and their differentiated progeny (specialised tissue cell types) for use in genetic, pharmacological and toxicological screens. Moreover, these technologies may be able to provide pure populations of appropriate cell types for transplantation therapies in the future.

The Company has its main research base and headquarters in Cambridge, UK with a second research base in Monash near Melbourne, Australia and a business development office in San Francisco, USA.

For further information on the company please visit: http://www.stemcellsciences.com

    For further information, please contact:
    Stem Cell Sciences plc (United Kingdom)
    Alastair Riddell, CEO
    Tim Allsopp, Chief Scientific Officer
    +44(0)1223-499160


'/>"/>
SOURCE Stem Cell Sciences plc
Copyright©2008 PR Newswire.
All rights reserved

Related biology technology :

1. New technique allows simultaneous tracking of gene expression and movement
2. Imaging Diagnostic Systems is Recognized for Its Advanced Engineering in Time-Resolved Techniques by the US Patent Office
3. Protein-printing technique gives snapshots of immune system defense
4. Prominent Urologist Dr. David B. Samadi Presents Breakthrough Robotic Surgery Techniques on OR Live Webcast
5. Nanoscale dimensioning is fast, cheap with new NIST optical technique
6. Like an arrow: Jumping insects use archery techniques
7. Parallel nano-soldering technique chosen for years top-50 by Nanotech Briefs
8. Pioneering IVF Technique Produces Region's First Pregnancy
9. New technique to compress light could open doors for optical communications
10. New technique produces genetically identical stem cells
11. On the boil: New nano technique significantly boosts boiling efficiency
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/22/2017)... ... 2017 , ... Baltimore biotech firm, PathSensors, announced that its ... developing and issuing recommendations to grow Maryland's biohealth industry and position the state ... , The recommendations are contained in a report from the Maryland ...
(Date:5/19/2017)... ... May 19, 2017 , ... In response to the strong base ... Medical Systems, Inc. announces the release of their Gait Trainer 3 with an Integrated ... a biomedical system to aid in rehabilitating individuals with cerebral palsy, traumatic brain injury, ...
(Date:5/18/2017)... ... May 16, 2017 , ... Clinical Supplies Management (“CSM”), a Great ... company continues to grow. CSM has doubled in size over the past six ... aggressive growth strategy. , Roger Gasper joins CSM as Chief Financial Officer. Roger ...
(Date:5/18/2017)... ... May 17, 2017 , ... USDM Life ... for the life sciences and healthcare industries, is honored that Jay Crowley ... Devices conference in Brussels, Belgium. , Crowley played a crucial role in the ...
Breaking Biology Technology:
(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/23/2017)... Research and Markets has announced the addition of the "Global ... 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market is ... next decade to reach approximately $14.21 billion by 2025. ... all the given segments on global as well as regional levels ...
Breaking Biology News(10 mins):