Navigation Links
Taming light with graphene
Date:6/20/2012

Spanish research groups achieve first ever visualizations of light guided with nanometric precision on graphene (a one-atom-thick sheet of carbon atoms). This visualization proves what theoretical physicists have long predicted; that it is possible to trap and manipulate light in a highly efficient way, using graphene as a novel platform for optical information processing and sensing. Synergies between theoretical proposals from IQFR-CSIC (Madrid), specializations in graphene nano-photonics and nano-optoelectonics at ICFO (Barcelona), and experimental expertise in optical nano-imaging at nanoGUNE (San Sebastian) give rise to these noteworthy results reported in Nature this week in a back-to-back publication alongside a similar study by the group of Dmitry Basov in UCSD in California.

Graphene is a material that, among many other fascinating properties, has an extraordinary optical behavior. Particularly interesting optical properties had been predicted for the case that light couples to so-called plasmons, wave-like excitations that were predicted to exist in the "sea" of conduction electrons of graphene. However, no direct experimental evidence of plasmons in graphene had been shown up to this work. This is because the wavelength of graphene plasmons is 10 to 100 times smaller than what can be seen with conventional light microscopes. Now, the researchers show the first experimental images of graphene plasmons. They used a so called near-field microscope that uses a sharp tip to convert the illumination light into a nanoscale light spot that provides the extra push needed for the plasmons to be created. At the same time the tip probes the presence of plasmons (see figure). Rainer Hillenbrand, leader of the nanoGUNE group comments: "Seeing is believing! Our near-field optical images definitely proof the existence of propagating and localized graphene plasmons and allow for a direct measurement of their dramatically reduced wavelength."

As demonstrated by the researchers, graphene plasmons can be used to electrically control light in a similar fashion as is traditionally achieved with electrons in a transistor. These capabilities, which until now were impossible with other existing plasmonic materials, enable new highly efficient nano-scale optical switches which can perform calculations using light instead of electricity. "With our work we show that graphene is an excellent choice for solving the long-standing and technologically important problem of modulating light at the speeds of today's microchips," says Javier Garca de Abajo, leader of the IQFR-CSIC group. In addition, the capability of trapping light in very small volumes could give rise to a new generation of nano-sensors with applications in diverse areas such as medicine and bio-detection, solar cells and light detectors, as well as quantum information processing. This result literally opens a new field of research and provides a first viable path towards ultrafast tuning of light, which was not possible until now. Frank Koppens, leader of the ICFO group, summarizes: "Graphene is a novel and unique material for plasmonics, truly bridging the fields of nano-electronics and nano-optics".


'/>"/>
Contact: Aitziber Lasa Iglesias
a.lasa@elhuyar.com
34-943-363-040
Elhuyar Fundazioa
Source:Eurekalert  

Related biology technology :

1. NASA develops super-black material that absorbs light across multiple wavelength bands
2. A light wave of innovation to advance solar energy
3. The Foremost Expert on Morgellons Disease Highlights the Gravity of This Illness
4. BioSpace Spotlights Northwests Life Science Community
5. Multidisciplinary team of researchers develop world’s lightest material
6. Blocked holes can enhance rather than stop light going through
7. Novartis Highlights Advances for Patients With Breast Cancer and Hematological Diseases With Over 160 SABCS and ASH Abstracts
8. New 3-D transistors promising future chips, lighter laptops
9. Sheffield scientists shine a light on the detection of bacterial infection
10. Cotton fabric cleans itself when exposed to ordinary sunlight
11. BioSpace Spotlights Leading Life Science Community
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Taming light with graphene
(Date:1/19/2017)... ... January 19, 2017 , ... ... for pharmaceutical research and development (R&D), today announced the launch of ... and interpretation for the rapidly evolving field of precision medicine. , ...
(Date:1/19/2017)... Mass. , Jan. 19, 2017 AquaBounty ... focused on enhancing productivity in aquaculture and a majority-owned ... announces that it has completed the listing of its ... the equity subscription from Intrexon. "AquaBounty,s listing ... that will broaden our exposure to the U.S. markets ...
(Date:1/19/2017)... (PRWEB) , ... January 19, 2017 , ... ... organization with services spanning the full spectrum of drug and device development, and ... services to pharma/device companies and clinicians, today announced Verified Clinical Trials ...
(Date:1/19/2017)... -- BD (Becton, Dickinson and Company) (NYSE: BDX ), ... a live webcast of its Annual Meeting of Shareholders on Tuesday, ... webcast can be accessed from the BD corporate website at ... 2017. ... BD BD is a global medical technology company that is ...
Breaking Biology Technology:
(Date:1/4/2017)... , Jan. 4, 2017  CES 2017 – ... sensor technology, today announced the launch of two ... systems, the highly-accurate biometric sensor modules that incorporate ... technology, experience and expertise. The two new designs ... specifically for hearables, and Benchmark BW2.0, a 2-LED ...
(Date:12/20/2016)... -- The rising popularity of mobility services such ... significant interest in keyless access systems. Following the ... (BLE), biometrics and near-field communication (NFC) are poised ... technologies in the automotive industry. This evolution from ... opens the market to specialist companies such as ...
(Date:12/16/2016)... , Dec 16, 2016 Research and ... System Market - Global Forecast to 2021" report to their ... The ... to grow at a CAGR of 14.06% from 2016 to 2021. ... and is projected to reach 854.8 Million by 2021. The growth ...
Breaking Biology News(10 mins):