Navigation Links
Taking solar technology up a notch
Date:5/23/2012

The limitations of conventional and current solar cells include high production cost, low operating efficiency and durability, and many cells rely on toxic and scarce materials. Northwestern University researchers have developed a new solar cell that, in principle, will minimize all of these solar energy technology limitations.

In particular, the device is the first to solve the problem of the Grtzel cell, a promising low-cost and environmentally friendly solar cell with a significant disadvantage: it leaks. The dye-sensitized cell's electrolyte is made of an organic liquid, which can leak and corrode the solar cell itself.

Grtzel cells use a molecular dye to absorb sunlight and convert it to electricity, much like chlorophyll in plants. But the cells typically don't last more than 18 months, making them commercially unviable. Researchers have been searching for an alternative for two decades.

At Northwestern, where interdisciplinary collaboration is a cornerstone, nanotechnology expert Robert P. H. Chang challenged chemist Mercouri Kanatzidis with the problem of the Grtzel cell. Kanatzidis' solution was a. Thus, the new all solid-state solar cell is inherently stable.

"The Grtzel cell is like having the concept for the light bulb but not having the tungsten wire or carbon material," said Kanatzidis, of the need to replace the troublesome liquid. "We created a robust novel material that makes the Grtzel cell concept work better. Our material is solid, not liquid, so it should not leak or corrode."

Postdoctoral fellow In Chung in the Kanatzidis group worked closely with graduate student Byunghong Lee in the Chang group to develop the new cells, achieving performance gains that amounted to approximately 1 percent per month.

In the Northwestern cell, a thin-film compound made up of cesium, tin and iodine, called CsSnI3, replaces the entire liquid electrolyte of the Grtzel cell. Details of the new solar cell -- an efficient, more stable and longer lasting cell -- will be published May 24 by the journal Nature.

Kanatzidis, the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences, and Chang, a professor of materials science and engineering at the McCormick School of Engineering and Applied Science, are the two senior authors of the paper.

"This is the first demonstration of an all solid-state dye-sensitized solar cell system that promises to exceed the performance of the Grtzel cell," Chang said. "Our work opens up the possibility of these materials becoming state of the art with much higher efficiencies than we've seen so far."

The Northwestern cell exhibits the highest conversion efficiency (approximately 10.2 percent) so far reported for a solid-state solar cell equipped with a dye sensitizer. This value is close to the highest reported performance for a Grtzel cell, approximately 11 to 12 percent. (Conventional solar cells made from highly purified silicon can convert roughly 20 percent of incoming sunlight.)

Unlike the Grtzel cell, the new solar cell uses both n-type and p-type semiconductors and a monolayer dye molecule serving as the junction between the two. Each nearly spherical nanoparticle, made of titanium dioxide, is an n-type semiconductor. Kanatzidis' CsSnI3 thin-film material is a new kind of soluble p-type semiconductor.

"Our inexpensive solar cell uses nanotechnology to the hilt," Chang said. "We have millions and millions of nanoparticles, which gives us a huge effective surface area, and we coat all the particles with light-absorbing dye."

A single solar cell measures half a centimeter by half a centimeter and about 10 microns thick. The dye-coated nanoparticles are packed in, and Kanatzidis' new material, which starts as a liquid, is poured in, flowing around the nanoparticles. Much like paint, the solvent evaporates, and a solid mass results. The sunlight-absorbing dye, where photons are converted into electricity, lies right between the two semiconductors.

Chang chose to use nanoparticles approximately 20 nanometers in diameter. This size optimizes the device, he said, increasing the surface area and allowing enough space between the particles for Kanatzidis' material to flow through and set.

Technically, this new cell is not really a Grtzel cell since the hole-conducting material CsSnI3 is itself light absorbing. In fact, the material absorbs more light over a wider range of the visible spectrum than the typical dye used in Grtzel cells. In the Kanatzidis-Chang cell, the CsSnI3 plays an additional role in the operation of the cell that is not played by the liquid electrolyte couple, and that role is light absorption.

"This is only the beginning," Chang said. "Our concept is applicable to many types of solar cells. There is a lot of room to grow."

The lightweight thin-film structures are compatible with automated manufacturing, the researchers point out. They next plan to build a large array of the solar cells.


'/>"/>
Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. Miniaturizing memory: Taking data storage to the molecular level
2. Diagnostic Imaging to Deliver Its 11th Annual Webcast of Key Events Taking Place at RSNA 2008
3. Patton Medical Devices Partners With Unomedical to Develop and Market the i-port Advance(TM) Injection Port for People Taking Multiple Daily Injections
4. Gloabl Harvest Initiative: Taking Down Fences To Meet Future Needs
5. WAVE Conference and Exhibition 2011 Taking Products to Market incorporating Micro & Nano Technology
6. Taking Control of Diabetes: Support World Diabetes Day (14th November 2010)
7. Taking brain-computer interfaces to the next phase
8. Pediatrics Study Finds Children Taking ADHD Medications Did Not Suffer More Serious Heart Problems or Cardiovascular-related Death
9. Office of Naval Research taking on challenges of unmanned underwater vehicles
10. Flexible nanoantenna arrays capture abundant solar energy
11. Understanding the science of solar-based energy: more researchers are better than one
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/5/2016)... 5, 2016 On Thursday, February 11, ... for community, health and disaster services, and the ... to enhance care coordination and service delivery for the ... need and to better connect service providers to the ... San Diego has handled more than ...
(Date:2/4/2016)... ... February 04, 2016 , ... Morf ... today announced an interactive FDA compliance training course, Writing Effective ... Professional Society) accredited interactive course on Morf Playbook—now conveniently available on smartphones and ...
(Date:2/4/2016)... ... 2016 , ... Shimadzu Scientific Instruments will showcase several new ... poster sessions, and present on the analysis of mycotoxins and medical cannabis at ... 10 at the Georgia World Congress Center in Atlanta, Georgia. , Attendees ...
(Date:2/4/2016)... JUNCTION, N.J. , Feb. 4, 2016 /PRNewswire/ ... care immunotherapy leader commercializing its flagship CytoSorb® blood ... cardiac surgery patients around the world, announced that ... will present at the Source Capital Group,s 2016 ... and update on the company.  ...
Breaking Biology Technology:
(Date:1/28/2016)... SAN JOSE, Calif., Jan. 28, 2016 Synaptics (NASDAQ: ... financial results for its second quarter ended December 31, 2015. ... the second quarter of fiscal 2016 increased 2 percent compared to ... the second quarter of fiscal 2016 was $35.0 million, or $0.93 ... Non-GAAP net income for the first quarter of fiscal 2016 ...
(Date:1/25/2016)... , Jan. 25, 2016  Glencoe Software, the ... pharma and publication industries, will provide the data management ... Centre (NPSC). ... Phenotypic analysis measures ... whole organisms, allowing comparisons between states such as health ...
(Date:1/21/2016)... , January 21, 2016 ... to a new market research report "Emotion Detection and ... Others), Software Tools (Facial Expression, Voice Recognition and ... - Global forecast to 2020", published by MarketsandMarkets, ... expected to reach USD 22.65 Billion by 2020, ...
Breaking Biology News(10 mins):