Navigation Links
TUM researchers develop environmentally friendly process to improve storage stability of probiotics
Date:7/6/2011

This release is available in German.

Probiotic bacteria are rapidly gaining ground as healthy food supplements. However, the production of this "functional food" has its pitfalls: only few probiotic bacterial strains are robust enough to survive conventional production processes. Researchers from Technische Universitaet Muenchen have now developed a particularly gentle method that allows the use of thus far unutilized probiotics. The outcome is beneficial for both manufacturers and consumers: it's energy and cost efficient -- and it makes probiotics less perishable.

Probiotics, as functional supplements, are good for both the immune system and for intestinal health. But how do they get into the yoghurt jar? So far, probiotic bacteria are mostly freeze-dried, before they are used in high concentrations in foods. However, the freeze-drying process is problematic for some probiotics it means certain death, and it is also quite energy consuming. The probiotics must first be frozen and in a second step heat is inserted in the sample to transform the ice directly into steam. Thus water is removed from the bacterial culture. The TUM researchers from the Chair of Food Process Engineering and Dairy Technology decided to save themselves this "detour" and tried to find a drying process that is both gentler and more environmentally friendly.

That is how the TUM researchers came across low temperature vacuum drying (LTVD) a process that runs under mild conditions. The product remains in a liquid state, since in a vacuum the evaporation takes place at low temperatures: For instance, water boils at 8C in an atmosphere of 10 mbar air pressure. Compared to freeze-drying, this method requires 40% less energy. Dr. Petra Frst's team at the Chair of Food Process Engineering and Dairy Technology conducted experiments on this process using three probiotic bacterial strains. The TUM researchers first determined the optimal LTVD conditions and then, in a second step, compared the results with conventional freeze-drying.

The results were unexpected: Low Temperature Vacuum Drying resulted partially in a higher survival rate than conventional drying. For instance, the yoghurt strain Lactobacillus bulgaricus, which barely survives freeze-drying, showed a ten times higher yield following LTVD. The new process will allow health-fostering probiotic "candidates" that are too fragile for conventional manufacturing processes to be used in the food industry. Conversely, it turned out that probiotics that handle freeze-drying very well, performed poorly in low temperature vacuum drying. To cut a long story short: The optimal drying process depends on the respective bacterial strain.

Dr. Jrgen Behr and his research team at the TUM Chair of Technical Microbiology focused on the molecular background of this phenomenon. They looked into possible differences between bacterial strains that might explain the disparate behaviour during drying. The secret could be traced back to the bacterial cell membranes, which protect the bacteria from environmental influences. The researchers demonstrated that in probiotics this adaptable "shield" has a different fatty acid composition for every bacterial strain. The researchers can now even control this composition by adjusting the cultivation conditions before the drying process. In an experiment they successfully increased the survival rate of a bacterial strain by about 50% merely by optimizing growth conditions.

The low temperature vacuum drying process is not only the most energy efficient one; it also has a positive influence on storage stability. Compared to probiotics from conventional freeze-drying, probiotics in powder form produced using LTVD keep significantly longer in mueslis or infant formula once the packaging is opened. Thus, more active bacteria remain in the product until it is consumed, even when stored under unfavourable conditions.


'/>"/>

Contact: Jana Bodicky
bodicky@zv.tum.de
49-816-171-5403
Technische Universitaet Muenchen
Source:Eurekalert

Related biology technology :

1. Researchers image graphene electron clouds, revealing how folds can harm conductivity
2. Researchers clarify properties of confined water within single-walled carbon nanotube pores
3. Researchers engineer the environment for stem cell development to control differentiation
4. Penn researchers break light-matter coupling strength limit in nanoscale semiconductors
5. Researchers From More Than 30 Countries Share Findings About the Use of Ultrasound in the Prevention, Diagnosis and Treatment of Heart Disease
6. Singapore researchers invent broadband graphene polarizer
7. Livermore researchers develop battery-less chemical detector
8. Researchers create terahertz invisibility cloak
9. UCLA researchers now 1 step closer to controlled engineering of nanocatalysts
10. Researchers pinpoint graphenes varying conductivity levels
11. Pitt-led researchers create super-small transistor, artificial atom powered by single electrons
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... -- Houston Methodist Willowbrook Hospital has signed a ... serve as their official health care provider. As ... provide sponsorship support, athletic training services, and most ... athletes and families. "We are excited ... to bring Houston Methodist quality services and programs ...
(Date:6/23/2016)...   EpiBiome , a precision microbiome engineering company, ... financing from Silicon Valley Bank (SVB). The financing will ... its drug development efforts, as well as purchase additional ... has been an incredible strategic partner to us – ... would provide," said Dr. Aeron Tynes Hammack , ...
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free ... and will showcase its product’s latest features from June 26 to June 30, ... poster on Disrupting Clinical Trials in The Cloud during the conference. DIA ...
Breaking Biology Technology:
(Date:5/12/2016)... WearablesResearch.com , a brand of Troubadour ... from the Q1 wave of its quarterly wearables survey. ... receptivity to a program where they would receive discounts ... company. "We were surprised to see that ... LaColla , CEO of Troubadour Research, "primarily because there ...
(Date:4/26/2016)... LONDON , April 26, 2016 /PRNewswire/ ... Systems, a product subsidiary of Infosys (NYSE: ... partnership to integrate the Onegini mobile security platform ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration ... security to access and transact across channels. Using ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
Breaking Biology News(10 mins):