Navigation Links
Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
Date:3/3/2008

PHILADELPHIA - For centuries, engineers have bent and torn metals to test their strength and ductility. Now, materials scientists at the University of Pennsylvania School of Engineering and Applied Science are studying the same metals but at nanoscale sizes in the form of wires a thousand times thinner than a human hair. This work has enable Penn engineers to construct a theoretical model to predict the strength of metals at the nanoscale. Using this model, they have found that, while metals tend to be stronger at nanoscale volumes, their strengths saturate at around 10-50 nanometers diameter, at which point they also become more sensitive to temperature and strain rate. Such prediction of different strength regimes of nano-solids is important for future application and engineering design of nanotechnology.

Such small-volume materials with relatively large surface areas are now routinely employed in microchips and nanoscience and technology, and their mechanical properties can differ vastly from their macroscale counterparts. Typically, smaller is stronger. A gold wire 200 nanometers in diameter can be 50 times stronger per area than centimeter-sized single-crystal gold. Engineers investigated the "smaller is stronger" trend.

Ju Li, an associate professor in the Department of Materials Science and Engineering at Penn, and his collaborators at the Georgia Institute of Technology have combined transition state theory, explicit atomistic energy landscape calculation and computer simulation to establish a theoretical framework to predict the strengths of small-volume materials. Unlike previous models, their prediction can be directly compared with experiments performed at realistic temperature and loading rates. This research appeared as a cover article in Volume 100 of Physical Review Letters.

Their study demonstrated that the free, exterior surface of nanosized materials can be fertile breeding grounds of dislocations at high stresses. Dislocations are string-like defects whose movements give rise to plastic flow, or shape change, of solids. In large-volume materials, it is easy for dislocations to multiply and entangle and to maintain a decent population inside; however, in small-volume materials, dislocations could show up and then exit the sample, one at a time. To initiate and sustain plastic flow in this case, dislocations need to be frequently nucleated fresh from the surface.

Since surface is itself a defect, researchers asked to what degree the measured strength of a small-volume material reflects surface properties and surface-mediated processes, particularly when the sample size is in the range of tens of nanometers. Li and his team modeled tiny bits of gold and copper to investigate the probabilistic nature of surface dislocation nucleation. The study showed that the activation volume associated with surface dislocation nucleation is characteristically in the range of 110 times the atomic volume, much smaller than that of many conventional dislocation processes. Small activation volumes will lead to sensitive temperature and strain-rate dependence of the critical stress, providing an upper bound to the size-strength relation.

From this, the team predicted that the "smaller is stronger" trend will saturate at wire diameters 10-50 nanometers for most metals. For comparison, computers now contain microchips with 45 nanometer strained silicon features. Associated with this saturation in strength is a transition in the rate-controlling mechanism, from collective dislocation dynamics to single dislocation nucleation.


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert  

Related biology technology :

1. CaviWipes(R): Taking Surface Disinfection to a New Level
2. Arthrosurface Raises $4 Million of Preferred Equity Financing
3. Harland Medical Systems to Offer March Plasma Systems Surface Materials
4. Surface Logix Achieves Objectives With SLx-4090 in Phase 2a Clinical Trial
5. Decision Biomarkers Awarded U.S. Patent for Protein Array Surface Chemistry
6. Sureshield Coatings Company Established to Market Industry-Leading Portfolio of Advanced Coatings for Metal Surfaces
7. Hill-Rom Introduces New Wound Therapy Surface With Innovative Safety and Treatment Features
8. Physicists pin down spin of surface atoms
9. New York Strengthens Emergency Preparedness with Cardinal Health Ventilators
10. Strengthening fluids with nanoparticles
11. SpectraScience Strengthens Leadership Team With Four Key Hires
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
(Date:10/12/2017)... JOHNSTON, Iowa (PRWEB) , ... October 12, 2017 ... ... company based in Vilnius, Lithuania, announced today that they have entered into a ... collaboration is to provide CRISPR researchers with additional tools for gene editing across ...
(Date:10/12/2017)... , ... October 12, 2017 ... ... has launched Rosalind™, the first-ever genomics analysis platform specifically designed for life ... Named in honor of pioneering researcher Rosalind Franklin, who made a major ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the main ... people each year. Especially those living in larger cities are affected by air pollution ... of the most pollution-affected countries globally - decided to take action. , “I knew ...
Breaking Biology Technology:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by Solution ... Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to 2022", ... 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at a ... ... MarketsandMarkets Logo ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/3/2017)... WASHINGTON , April 3, 2017 /PRNewswire-USNewswire/ ... single-cell precision engineering platform, detected a statistically ... cell product prior to treatment and objective ... highlight the potential to predict whether cancer ... prior to treatment, as well as to ...
Breaking Biology News(10 mins):