Navigation Links
Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
Date:3/3/2008

PHILADELPHIA - For centuries, engineers have bent and torn metals to test their strength and ductility. Now, materials scientists at the University of Pennsylvania School of Engineering and Applied Science are studying the same metals but at nanoscale sizes in the form of wires a thousand times thinner than a human hair. This work has enable Penn engineers to construct a theoretical model to predict the strength of metals at the nanoscale. Using this model, they have found that, while metals tend to be stronger at nanoscale volumes, their strengths saturate at around 10-50 nanometers diameter, at which point they also become more sensitive to temperature and strain rate. Such prediction of different strength regimes of nano-solids is important for future application and engineering design of nanotechnology.

Such small-volume materials with relatively large surface areas are now routinely employed in microchips and nanoscience and technology, and their mechanical properties can differ vastly from their macroscale counterparts. Typically, smaller is stronger. A gold wire 200 nanometers in diameter can be 50 times stronger per area than centimeter-sized single-crystal gold. Engineers investigated the "smaller is stronger" trend.

Ju Li, an associate professor in the Department of Materials Science and Engineering at Penn, and his collaborators at the Georgia Institute of Technology have combined transition state theory, explicit atomistic energy landscape calculation and computer simulation to establish a theoretical framework to predict the strengths of small-volume materials. Unlike previous models, their prediction can be directly compared with experiments performed at realistic temperature and loading rates. This research appeared as a cover article in Volume 100 of Physical Review Letters.

Their study demonstrated that the free, exterior surface of nanosized materials can be fertile breeding grounds of dislocations at high stresses. Dislocations are string-like defects whose movements give rise to plastic flow, or shape change, of solids. In large-volume materials, it is easy for dislocations to multiply and entangle and to maintain a decent population inside; however, in small-volume materials, dislocations could show up and then exit the sample, one at a time. To initiate and sustain plastic flow in this case, dislocations need to be frequently nucleated fresh from the surface.

Since surface is itself a defect, researchers asked to what degree the measured strength of a small-volume material reflects surface properties and surface-mediated processes, particularly when the sample size is in the range of tens of nanometers. Li and his team modeled tiny bits of gold and copper to investigate the probabilistic nature of surface dislocation nucleation. The study showed that the activation volume associated with surface dislocation nucleation is characteristically in the range of 110 times the atomic volume, much smaller than that of many conventional dislocation processes. Small activation volumes will lead to sensitive temperature and strain-rate dependence of the critical stress, providing an upper bound to the size-strength relation.

From this, the team predicted that the "smaller is stronger" trend will saturate at wire diameters 10-50 nanometers for most metals. For comparison, computers now contain microchips with 45 nanometer strained silicon features. Associated with this saturation in strength is a transition in the rate-controlling mechanism, from collective dislocation dynamics to single dislocation nucleation.


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert  

Related biology technology :

1. CaviWipes(R): Taking Surface Disinfection to a New Level
2. Arthrosurface Raises $4 Million of Preferred Equity Financing
3. Harland Medical Systems to Offer March Plasma Systems Surface Materials
4. Surface Logix Achieves Objectives With SLx-4090 in Phase 2a Clinical Trial
5. Decision Biomarkers Awarded U.S. Patent for Protein Array Surface Chemistry
6. Sureshield Coatings Company Established to Market Industry-Leading Portfolio of Advanced Coatings for Metal Surfaces
7. Hill-Rom Introduces New Wound Therapy Surface With Innovative Safety and Treatment Features
8. Physicists pin down spin of surface atoms
9. New York Strengthens Emergency Preparedness with Cardinal Health Ventilators
10. Strengthening fluids with nanoparticles
11. SpectraScience Strengthens Leadership Team With Four Key Hires
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
(Date:6/27/2016)... GUELPH, ON , June 27, 2016 /PRNewswire/ - BIOREM ... it has been advised by its major shareholders, Clean ... LP, United States based venture ... common shares of Biorem (on a fully diluted, as ... for the disposition of their entire equity holdings in ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... Amgen, will join the faculty of the University of North Carolina Kenan-Flagler ... of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s ...
(Date:6/24/2016)... ... , ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension ... are higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... bottom of the cuvette holder. , FireflySci has developed several Agilent flow cell ...
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
Breaking Biology Technology:
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
Breaking Biology News(10 mins):