Navigation Links
Structure of enzyme against chemical warfare agents determined
Date:3/19/2009

This release is available in German.

The enzyme DFPase from the squid Loligo vulgaris, is able to rapidly and efficiently detoxify chemical warfare agents such as Sarin, which was used in the Tokyo subway attacks in 1995. A detailed understanding of the mechanism by which enzymes catalyze chemical reactions is necessary for efforts aiming to improve their properties. A group of researchers at the University of Frankfurt, the Bundeswehr Institute for Pharmacology and Toxicology in Munich, and Los Alamos National Laboratory in New Mexico, USA, have successfully determined the structure of DFPase using neutron diffraction. They report their findings in the 20 January 2009 issue of the journal Proceedings of the National Academy of Sciences (106(3), 713-718).

The team used the neutron source at Los Alamos National Laboratory, one of only three sources worldwide equipped for protein crystallography. In contrast to structure determination using X-rays, neutrons are able to locate the positions of hydrogen atoms, which make up half of all atoms in proteins, and are crucial for chemical reactions. As X-rays interact with the electron cloud around an atomic nucleus, so heavier elements are more easily seen, while neutrons interact with the atomic nuclei, and atoms in proteins such as hydrogen, oxygen, nitrogen, carbon, and sulfur, all scatter neutrons in a similar manner. Yet despite being so widespread, hydrogen atoms in proteins are quite elusive. As X-rays interact with the electron cloud around an atomic nucleus, hydrogen atoms, with only one electron, are normally invisible in structures. In contrast, neutrons interact with the atomic nuclei, such that atoms in proteins, hydrogen, oxygen, nitrogen, carbon, and sulfur, all scatter neutrons in a similar manner. The two techniques therefore yield complementary information about a protein structure. This information about hydrogen atoms is therefore essential for a basic understanding of the reaction mechanism of DFPase.

Neutron structures of proteins are quite rare and technically demanding, requiring large crystals and long measurement times. Though the first neutron structure of a protein was reported 40 years ago, in 1969, to date only about 20 unique structures have been solved, out of 50000 entries in the Protein Data Bank. " The effort has been absolutely worth it, " says Junior-Prof. Julian Chen, who published this work together with Dr. Marc-Michael Blum and Prof. Heinz Rueterjans. " Based on the results of this study, we can now create targeted changes to DFPase to augment the activity, as well as diversify the substrate range of the enzyme."


'/>"/>

Contact: Julian Chen
chen@chemie.uni-frankfurt.de
49-697-982-9641
Goethe University Frankfurt
Source:Eurekalert

Related biology technology :

1. New Initiative Has Shocking Effect: Thousands of Missourians with Abnormal Chromosome Structures Are Not Human
2. Two nanostructures are better than one
3. VaxGen Further Restructures to Preserve Cash as It Pursues Strategic Initiatives
4. NIST team develops novel method for nanostructured polymer thin films
5. Smart insulin nanostructures pass feasibility test, UT study reports
6. Idenix Pharmaceuticals Restructures to Concentrate Efforts on HCV and HIV Programs
7. Researchers outline structure of largest nonvirus particle ever crystallized
8. CME LLC Restructures, Announces Its New Executive Management Team
9. Ames Laboratory researchers solve fuel-cell membrane structure conundrum
10. BioMarin and Genzyme Restructure Aldurazyme 50/50 Joint Venture
11. DRI Capital Launches Structured Finance Fund
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... , ... October 12, 2017 , ... ... today announced the three Winners and six Finalists of the 2017 Blavatnik Regional ... by the Blavatnik Family Foundation and administered by the New York Academy of ...
(Date:10/12/2017)... Diego, CA (PRWEB) , ... ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically ... all bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... it will be hosting a Webinar titled, “Pathology is going digital. Is your ... on digital pathology adoption best practices and how Proscia improves lab economics and ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
Breaking Biology Technology:
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
(Date:3/30/2017)... -- Trends, opportunities and forecast in this market to ... AFIS, iris recognition, facial recognition, hand geometry, vein recognition, ... industry (government and law enforcement, commercial and retail, health ... and by region ( North America , ... , and the Rest of the World) ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
Breaking Biology News(10 mins):