Navigation Links
Stretching single molecules allows precision studies of interacting electrons
Date:6/14/2010

ITHACA, N.Y. - With controlled stretching of molecules, Cornell researchers have demonstrated that single-molecule devices can serve as powerful new tools for fundamental science experiments. Their work has resulted in detailed tests of long-existing theories on how electrons interact at the nanoscale.

The work, led by professor of physics Dan Ralph, is published in the June 10 online edition of the journal Science. First author is J.J. Parks, a former graduate student in Ralph's lab.

The scientists studied particular cobalt-based molecules with so-called intrinsic spin a quantized amount of angular momentum.

Theories first postulated in the 1980s predicted that molecular spin would alter the interaction between electrons in the molecule and conduction electrons surrounding it, and that this interaction would determine how easily electrons flow through the molecule. Before now, these theories had not been tested in detail because of the difficulties involved in making devices with controlled spins.

Understanding single-molecule electronics requires expertise in both chemistry and physics, and Cornell's team has specialists in both.

"People know about high-spin molecules, but no one has been able to bring together the chemistry and physics to make controlled contact with these high-spin molecules," Ralph said.

The researchers made their observations by stretching individual spin-containing molecules between two electrodes and analyzing their electrical properties. They watched electrons flow through the cobalt complex, cooled to extremely low temperatures, while slowly pulling on the ends to stretch it. At a particular point, it became more difficult to pass current through the molecule. The researchers had subtly changed the magnetic properties of the molecule by making it less symmetric.

After releasing the tension, the molecule returned to its original shape and began passing current more easily thus showing the molecule had not been harmed. Measurements as a function of temperature, magnetic field and the extent of stretching gave the team new insights into exactly what is the influence of molecular spin on the electron interactions and electron flow.

The effects of high spin on the electrical properties of nanoscale devices were entirely theoretical issues before the Cornell work, Ralph said. By making devices containing individual high-spin molecules and using stretching to control the spin, the Cornell team proved that such devices can serve as a powerful laboratory for addressing these fundamental scientific questions.


'/>"/>

Contact: Blaine Friedlander
bpf2@cornell.edu
607-254-8093
Cornell University
Source:Eurekalert

Related biology technology :

1. Stretching silicon: A new method to measure how strain affects semiconductors
2. New small-scale generator produces alternating current by stretching zinc oxide wires
3. Novare Announces First Ever Single Port Laparoscopic Kidney Removal (Nephrectomy) Using RealHand(TM) HD Instruments
4. NIH Announces Advanced Cell Technologys Single Cell Embryo Biopsy Technique as a Means to Derive Embryonic Stem Cells to be Considered for Federal Funding
5. BioNanomatrix Announces Issuance of Key Nanofluidics Patent Enabling Single Molecule Whole Genome Analysis
6. Genmab Amends Ofatumumab Pivotal Study in NHL to Single Arm Study
7. Quantum device traps, detects and manipulates the spin of single electrons
8. Thermo Fisher Scientific to Expand Manufacturing Operation for Single-Use Bioprocessing Containers
9. Worlds smallest radio uses single nanotube to pick up good vibrations
10. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
11. Faster X-ray interferometers due to single-photon interference
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:7/20/2017)... ... 2017 , ... Dr. Asher Kimchi, Founder and Chairman of the International ... at the 22nd World Congress on Heart Disease held in Vancouver, BC, Canada. In ... Distinguished Fellowship Awards. , Dr. Asher Kimchi, together with Co-Chairmen Dr. John A. Elefteriades ...
(Date:7/20/2017)... and PLYMOUTH, Minn., July 20, 2017 /PRNewswire/ ... , a personalized genetic evaluations company, today announced ... their partnership investigating a genetic mutation implicated in ... extend the partnership for a second case involving ... year, the KCNQ2 Cure Alliance and Pairnomix entered ...
(Date:7/18/2017)... ... , ... Sourcing custom glass or quartz parts can be a daunting task. ... execute your job can take many hours of emails, phone calls and on-line research. ... showcase the company’s capabilities and core custom categories, and enables you to start the ...
(Date:7/18/2017)... ... July 18, 2017 , ... Allotrope Foundation won the 2017 ... of the Allotrope Framework for commercial use. , The Bio-IT World Best Practices ... elevate the critical role of information technology in modern biomedical research, but also ...
Breaking Biology Technology:
(Date:4/6/2017)... Forecasts by Product Type (EAC), Biometrics, Card-Based ... & Logistics, Government & Public Sector, Utilities / Energy ... Nuclear Power), Industrial, Retail, Business Organisation (BFSI), Hospitality & ... for a definitive report on the $27.9bn Access Control ... ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, ... Hack the Genome hackathon at Microsoft,s headquarters ... two-day competition will focus on developing health and wellness ... Hack the Genome is the first ... tremendous. The world,s largest companies in the genomics, tech ...
Breaking Biology News(10 mins):