Navigation Links
Stretching single molecules allows precision studies of interacting electrons

ITHACA, N.Y. - With controlled stretching of molecules, Cornell researchers have demonstrated that single-molecule devices can serve as powerful new tools for fundamental science experiments. Their work has resulted in detailed tests of long-existing theories on how electrons interact at the nanoscale.

The work, led by professor of physics Dan Ralph, is published in the June 10 online edition of the journal Science. First author is J.J. Parks, a former graduate student in Ralph's lab.

The scientists studied particular cobalt-based molecules with so-called intrinsic spin a quantized amount of angular momentum.

Theories first postulated in the 1980s predicted that molecular spin would alter the interaction between electrons in the molecule and conduction electrons surrounding it, and that this interaction would determine how easily electrons flow through the molecule. Before now, these theories had not been tested in detail because of the difficulties involved in making devices with controlled spins.

Understanding single-molecule electronics requires expertise in both chemistry and physics, and Cornell's team has specialists in both.

"People know about high-spin molecules, but no one has been able to bring together the chemistry and physics to make controlled contact with these high-spin molecules," Ralph said.

The researchers made their observations by stretching individual spin-containing molecules between two electrodes and analyzing their electrical properties. They watched electrons flow through the cobalt complex, cooled to extremely low temperatures, while slowly pulling on the ends to stretch it. At a particular point, it became more difficult to pass current through the molecule. The researchers had subtly changed the magnetic properties of the molecule by making it less symmetric.

After releasing the tension, the molecule returned to its original shape and began passing current more easily thus showing the molecule had not been harmed. Measurements as a function of temperature, magnetic field and the extent of stretching gave the team new insights into exactly what is the influence of molecular spin on the electron interactions and electron flow.

The effects of high spin on the electrical properties of nanoscale devices were entirely theoretical issues before the Cornell work, Ralph said. By making devices containing individual high-spin molecules and using stretching to control the spin, the Cornell team proved that such devices can serve as a powerful laboratory for addressing these fundamental scientific questions.


Contact: Blaine Friedlander
Cornell University

Related biology technology :

1. Stretching silicon: A new method to measure how strain affects semiconductors
2. New small-scale generator produces alternating current by stretching zinc oxide wires
3. Novare Announces First Ever Single Port Laparoscopic Kidney Removal (Nephrectomy) Using RealHand(TM) HD Instruments
4. NIH Announces Advanced Cell Technologys Single Cell Embryo Biopsy Technique as a Means to Derive Embryonic Stem Cells to be Considered for Federal Funding
5. BioNanomatrix Announces Issuance of Key Nanofluidics Patent Enabling Single Molecule Whole Genome Analysis
6. Genmab Amends Ofatumumab Pivotal Study in NHL to Single Arm Study
7. Quantum device traps, detects and manipulates the spin of single electrons
8. Thermo Fisher Scientific to Expand Manufacturing Operation for Single-Use Bioprocessing Containers
9. Worlds smallest radio uses single nanotube to pick up good vibrations
10. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
11. Faster X-ray interferometers due to single-photon interference
Post Your Comments:
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be ... York on Wednesday, December 2 at 9:30 a.m. ET/6:30 ... CEO, will provide a corporate overview. th Annual ... 1:00 p.m. ET/10:00 a.m. PT . Jim Mazzola , ... corporate overview. --> th Annual Oppenheimer Healthcare Conference ...
(Date:11/24/2015)... Inc., a worldwide provider of clinical research services headquartered in ... has set a new quarterly earnings record in Q3 of 2015.  ... Q3 of 2014 to Q3 of 2015.   ... the establishment of an Asia-Pacific office to ... and Mexico , with the establishment ...
(Date:11/24/2015)... York , November 24, 2015 ... a recent market research report released by Transparency Market ... to expand at a CAGR of 17.5% during the ... Prenatal Testing Market - Global Industry Analysis, Size, Volume, ... the global non-invasive prenatal testing market to reach a ...
Breaking Biology Technology:
(Date:11/17/2015)... Nov. 17, 2015 Pressure BioSciences, Inc. (OTCQB: ... development and sale of broadly enabling, pressure cycling technology ... industry, today announced it has received gross proceeds of ... Private Placement (the "Offering"), increasing the total amount raised ... more additional closings are expected in the near future. ...
(Date:11/11/2015)... , Nov. 11, 2015   MedNet Solutions , an ... of clinical research, is pleased to announce that it will ... Trials (PCT) event, to be held November 17-19 in ... to view live demonstrations of iMedNet , ... how iMedNet has been able to deliver time ...
(Date:11/4/2015)... November 4, 2015 --> ... report published by Transparency Market Research "Home Security Solutions Market ... Forecast 2015 - 2022", the global home security solutions market is ... by 2022. The market is estimated to expand at ... 2015 to 2022. Rising security needs among customers at ...
Breaking Biology News(10 mins):