Navigation Links
Stretching silicon: A new method to measure how strain affects semiconductors
Date:11/3/2008

MADISON: University of Wisconsin-Madison engineers and physicists have developed a method of measuring how strain affects thin films of silicon that could lay the foundation for faster flexible electronics.

Silicon is the industry standard semiconductor for electronic devices. Silicon thin films could be the basis for fast, flexible electronics. Researchers have long known that inducing strain into the silicon increases device speed, yet have not fully understood why.

Developed by a team of researchers led by Max Lagally, the Erwin W. Mueller and Bascom Professor of Materials Science and Engineering at UW-Madison, the new method enables the researchers to directly measure the effects of strain on the electronic structure of silicon. The group published its findings in the October 10 online edition of Physical Review Letters, and the paper will soon appear in the print edition of the journal.

Standard strained silicon has so many dislocations and defects that strain measurements aren╒t accurate, so the research team starts with its own specially fabricated silicon nanomembranes. The team can induce uniform strain in these extremely thin, flexible silicon sheets.

"Imagine if you were to attach a ring and a hook on all four corners and pull equally on all four corners like a trampoline, it stretches out like that," says Lagally.

As a result, the researchers avoid the defects and variations that make it difficult to study standard strained silicon. Uniform strain allows accurate measurement of its effect on electronic properties.

The researchers drew on the powerful X-ray source at the UW-Madison Synchrotron Radiation Center (SRC), which allowed them to measure conduction bands in strained silicon. To study the energy levels, the researchers needed a wavelength-tunable X-ray source. The SRC also houses a monochromator, a device that enabled the team to choose a precise wavelength, giving their readings the required high energy resolution.

By measuring nanomembranes with different percentages of strain, the researchers have determined the direction and magnitude of shifts in the conduction bands. Their findings have shed light on divergent theories and uncovered some surprising properties. Understanding these properties, and the energy shifts in strained materials, could lead to the improvement of fast, flexible electronic devices.

Capitalizing on its techniques for fabricating silicon nanomembranes, the group hopes to use SRC resources to study strain in other semiconductor materials, as well as to make measurements over smaller areas to study the effects of localized strain.

"The ability to make membranes of various materials, to strain them, and make these measurements will enable us to determine strain-dependent band structure of all kinds of semiconductor materials," says Lagally.


'/>"/>

Contact: Max Lagally
lagally@engr.wisc.edu
608-263-2078
University of Wisconsin-Madison
Source:Eurekalert

Related biology technology :

1. Move over, silicon: Advances pave way for powerful carbon-based electronics
2. Waters Publishes Rapid and Specific Method of Detection for Melamine in Infant Formula and Liquid Milk, in Support of Chinas Ministry of Science and Technology
3. SpectraScience Awarded Patent for Its Optical Biopsy System and Methods for Tissue Diagnosis
4. UC Riverside researcher develops novel method to grow human embryonic stem cells
5. PerkinElmer Expertise and Solutions Integral to Food Safety Monitoring for the Beijing Games : Methods, Applications Expertise and Instrumentation Deployed in Mobile Laboratory
6. Lumidigm Signs Strategic Agreement with Methode Electronics : Automotive Supplier Invests in Biometric Component Development
7. Enhanced Protein Tomography(TM) Method for Rapid Epitope Determination
8. Bionovo Develops a High Throughput LC-MS/MS Method for Simultaneous Quantification of Multiple Bioactive Compounds
9. febit Receives U.S. Patent for Microfluidic Extraction Method
10. Researchers develop method for transmitting medical images via cell phones
11. Signalife Awarded New U.S. Patent, System For, And Method Of, Monitoring Heartbeats Of A Patient
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... ... June 23, 2016 , ... ... announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The ... is proud to add Target to its list of well-respected retailers. This list ...
(Date:6/23/2016)... SPRING, Md. , June 23, 2016 A ... collected from the crime scene to track the criminal down. ... and the U.S. Food and Drug Administration (FDA) uses DNA ... Sound far-fetched? It,s not. The ... genome sequencing to support investigations of foodborne illnesses. Put as ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator ... Members of the Class of 2016 were selected from a pool of 128 ... About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
Breaking Biology Technology:
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
Breaking Biology News(10 mins):