Navigation Links
Straintronics: Engineers create piezoelectric graphene
Date:3/17/2012

In what became known as the 'Scotch tape technique," researchers first extracted graphene with a piece of adhesive in 2004. Graphene is a single layer of carbon atoms arranged in a honeycomb, hexagonal pattern. It looks like chicken wire.

Graphene is a wonder material. It is one-hundred-times better at conducting electricity than silicon. It is stronger than diamond. And, at just one atom thick, it is so thin as to be essentially a two-dimensional material. Such promising physics have made graphene the most studied substance of the last decade, particularly in nanotechnology. In 2010, the researchers who first isolated it shared the Nobel Prize.

Yet, while graphene is many things, it is not piezoelectric. Piezoelectricity is the property of some materials to produce electric charge when bent, squeezed or twisted. Perhaps more importantly, piezoelectricity is reversible. When an electric field is applied, piezoelectric materials change shape, yielding a remarkable level of engineering control.

Piezoelectrics have found application in countless devices from watches, radios and ultrasound to the push-button starters on propane grills, but these uses all require relatively large, three-dimensional quantities of piezoelectric materials.

Now, in a paper published in the journal ACS Nano, two materials engineers at Stanford have described how they have engineered piezoelectrics into graphene, extending for the first time such fine physical control to the nanoscale.

Straintronics

"The physical deformations we can create are directly proportional to the electrical field applied and this represents a fundamentally new way to control electronics at the nanoscale," said Evan Reed, head of the Materials Computation and Theory Group at Stanford and senior author of the study. "This phenomenon brings new dimension to the concept of 'straintronics' for the way the electrical field strains or deforms the lattice of carbon, causing it to change shape in predictable ways."

"Piezoelectric graphene could provide an unparalleled degree of electrical, optical or mechanical control for applications ranging from touchscreens to nanoscale transistors," said Mitchell Ong, a post-doctoral scholar in Reed's lab and first author of the paper.

AUDIO: Listen to Stanford engineers Evan Reed and Mitchell Ong discuss their piezoelectric graphene.

Click here for more information.

Using a sophisticated modeling application running on high-performance supercomputers, the engineers simulated the deposition of atoms on one side of a graphene lattice a process known as doping and measured the piezoelectric effect.

They modeled graphene doped with lithium, hydrogen, potassium and fluorine, as well as combinations of hydrogen and fluorine and lithium and fluorine on either side of the lattice. Doping just one side of the graphene, or doping both sides with different atoms, is key to the process as it breaks graphene's perfect physical symmetry, which otherwise cancels the piezoelectric effect.

The results surprised both engineers.

"We thought the piezoelectric effect would be present, but relatively small. Yet, we were able to achieve piezoelectric levels comparable to traditional three-dimensional materials," said Reed. "It was pretty significant."

Designer piezoelectricity

"We were further able to fine tune the effect by pattern doping the grapheneselectively placing atoms in specific sections and not others," said Ong. "We call it designer piezoelectricity because it allows us to strategically control where, when and how much the graphene is deformed by an applied electrical field with promising implications for engineering."

While the results in creating piezoelectric graphene are encouraging, the researchers believe that their technique might further be used to engineer piezoelectricity in nanotubes and other nanomaterials with applications ranging from electronics, photonics, and energy harvesting to chemical sensing and high-frequency acoustics.

"We're already looking now at new piezoelectric devices based on other 2D and low-dimensional materials hoping they might open new and dramatic possibilities in nanotechnology," said Reed.


'/>"/>

Contact: Andrew Myers
admyers@stanford.edu
650-736-2245
Stanford School of Engineering
Source:Eurekalert  

Related biology technology :

1. Online Systems Engineering Master's Program Attracts Engineers from Fortune 500 Firms
2. NC State engineers discover nanoparticles can break on through
3. Engineers aim to solve burning computer problem
4. Virginia Tech engineers identify conditions that initiate erosion
5. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
6. Virginia Tech engineers investigate energy independent monitoring system for bridges
7. New Educational Website Celebrates the Accomplishments of Engineers
8. Engineers tune a nanoscale grating structure to trap and release a variety of light waves
9. UB engineers prove that carbon nanotubes are superior to metals for electronics
10. Siemens Offers Life Science Solutions Design Guide for Consulting Engineers
11. Connecting Materials Science With Biology, K-State Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Straintronics: Engineers create piezoelectric graphene
(Date:2/3/2016)... Feb. 3, 2016  With the growing need ... that is underway, therapies such as monoclonal antibodies, ... whole host of indications are in high demand. ... the development and production of these therapeutics. However, ... and high costs, novel approaches and novel expression ...
(Date:2/3/2016)... Feb. 3, 2016 New Jersey Health Foundation ... $1 million for researchers in New ... research that demonstrates exciting potential.   ... for the New Jersey Health Foundation Research Grant ... these educational institutions— Princeton University, Rutgers University, Rowan ...
(Date:2/3/2016)... ... February 03, 2016 , ... ... Unix visualization solutions today announced the addition of a powerful “Session Preview” feature ... see the current state of the remote Linux desktop or other applications (sessions) ...
(Date:2/3/2016)... Calif. , Feb. 3, 2016  Today, Symphony ... of AlphaImpactRx , a leading provider of primary ... companies to IMS Health , a global information ... complementary offerings, capabilities and technologies will be integrated into ... growing global primary market research capabilities. ...
Breaking Biology Technology:
(Date:1/22/2016)... 2016 http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ... the  "Global Behavioral Biometric Market 2016-2020" ... http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced the ... Market 2016-2020"  report to their offering. ... http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ) has announced the addition ...
(Date:1/20/2016)... SAN JOSE, Calif. , Jan. 20, 2016 ... leading developer of human interface solutions, today announced ... touch controller solution for wearables and small screen ... appliances such as printers. Supporting round and rectangular ... the S1423 offers excellent performance with moisture on ...
(Date:1/11/2016)... Jan. 11, 2016 Synaptics Incorporated (NASDAQ: ... today announced that its ClearPad ® TouchView ™ ... won two separate categories in the 8 th ... Best Technology Breakthrough. The Synaptics ® TDDI solution ... supply chain, thinner devices, brighter displays and borderless designs. ...
Breaking Biology News(10 mins):