Navigation Links
Straintronics: Engineers create piezoelectric graphene

In what became known as the 'Scotch tape technique," researchers first extracted graphene with a piece of adhesive in 2004. Graphene is a single layer of carbon atoms arranged in a honeycomb, hexagonal pattern. It looks like chicken wire.

Graphene is a wonder material. It is one-hundred-times better at conducting electricity than silicon. It is stronger than diamond. And, at just one atom thick, it is so thin as to be essentially a two-dimensional material. Such promising physics have made graphene the most studied substance of the last decade, particularly in nanotechnology. In 2010, the researchers who first isolated it shared the Nobel Prize.

Yet, while graphene is many things, it is not piezoelectric. Piezoelectricity is the property of some materials to produce electric charge when bent, squeezed or twisted. Perhaps more importantly, piezoelectricity is reversible. When an electric field is applied, piezoelectric materials change shape, yielding a remarkable level of engineering control.

Piezoelectrics have found application in countless devices from watches, radios and ultrasound to the push-button starters on propane grills, but these uses all require relatively large, three-dimensional quantities of piezoelectric materials.

Now, in a paper published in the journal ACS Nano, two materials engineers at Stanford have described how they have engineered piezoelectrics into graphene, extending for the first time such fine physical control to the nanoscale.


"The physical deformations we can create are directly proportional to the electrical field applied and this represents a fundamentally new way to control electronics at the nanoscale," said Evan Reed, head of the Materials Computation and Theory Group at Stanford and senior author of the study. "This phenomenon brings new dimension to the concept of 'straintronics' for the way the electrical field strains or deforms the lattice of carbon, causing it to change shape in predictable ways."

"Piezoelectric graphene could provide an unparalleled degree of electrical, optical or mechanical control for applications ranging from touchscreens to nanoscale transistors," said Mitchell Ong, a post-doctoral scholar in Reed's lab and first author of the paper.

AUDIO: Listen to Stanford engineers Evan Reed and Mitchell Ong discuss their piezoelectric graphene.

Click here for more information.

Using a sophisticated modeling application running on high-performance supercomputers, the engineers simulated the deposition of atoms on one side of a graphene lattice a process known as doping and measured the piezoelectric effect.

They modeled graphene doped with lithium, hydrogen, potassium and fluorine, as well as combinations of hydrogen and fluorine and lithium and fluorine on either side of the lattice. Doping just one side of the graphene, or doping both sides with different atoms, is key to the process as it breaks graphene's perfect physical symmetry, which otherwise cancels the piezoelectric effect.

The results surprised both engineers.

"We thought the piezoelectric effect would be present, but relatively small. Yet, we were able to achieve piezoelectric levels comparable to traditional three-dimensional materials," said Reed. "It was pretty significant."

Designer piezoelectricity

"We were further able to fine tune the effect by pattern doping the grapheneselectively placing atoms in specific sections and not others," said Ong. "We call it designer piezoelectricity because it allows us to strategically control where, when and how much the graphene is deformed by an applied electrical field with promising implications for engineering."

While the results in creating piezoelectric graphene are encouraging, the researchers believe that their technique might further be used to engineer piezoelectricity in nanotubes and other nanomaterials with applications ranging from electronics, photonics, and energy harvesting to chemical sensing and high-frequency acoustics.

"We're already looking now at new piezoelectric devices based on other 2D and low-dimensional materials hoping they might open new and dramatic possibilities in nanotechnology," said Reed.


Contact: Andrew Myers
Stanford School of Engineering

Related biology technology :

1. Online Systems Engineering Master's Program Attracts Engineers from Fortune 500 Firms
2. NC State engineers discover nanoparticles can break on through
3. Engineers aim to solve burning computer problem
4. Virginia Tech engineers identify conditions that initiate erosion
5. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
6. Virginia Tech engineers investigate energy independent monitoring system for bridges
7. New Educational Website Celebrates the Accomplishments of Engineers
8. Engineers tune a nanoscale grating structure to trap and release a variety of light waves
9. UB engineers prove that carbon nanotubes are superior to metals for electronics
10. Siemens Offers Life Science Solutions Design Guide for Consulting Engineers
11. Connecting Materials Science With Biology, K-State Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick
Post Your Comments:
Related Image:
Straintronics: Engineers create piezoelectric graphene
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading ... culture models, has promoted Melanie Aregger to serve as Chief Operating Officer. ... on the management team and was promoted to Head of InSphero Diagnostics ...
(Date:11/24/2015)... Va. , Nov. 24, 2015 ... focused on discovering drugs for metabolic disorders, announced ... to its Board of Directors (BOD). Mr. ... officer of Human Genome Sciences (HGS), and also ... Organization. Jim Powers , Chairman and ...
(Date:11/24/2015)... YORK , Nov. 24, 2015 According to ... than in 2005. This is something that many doctors, scientists, ... time. One questions remains: with fewer PSA tests being done, ... ? Dr. David Samadi, "Despite the ... the disease remains the second leading cancer cause of death ...
(Date:11/23/2015)... ... November 23, 2015 , ... Shimadzu Corporation announces that ... UC Unified Chromatography system. The award from R&D magazine recognizes Shimadzu’s Nexera UC ... year in the analytical and testing category. R&D Magazine chose the Nexera UC ...
Breaking Biology Technology:
(Date:10/29/2015)... Oct. 29, 2015  Rubicon Genomics, Inc., today ... distribution of its DNA library preparation products, including ... new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq has been ... of NGS libraries for liquid biopsies--the analysis of ... prognostic applications in cancer and other conditions. Eurofins ...
(Date:10/27/2015)... , October 27, 2015 ... Semantic Gaze Mapping technology (ASGM) automatically maps data from ... Tracking Glasses , so that they can be ... --> Munich, Germany , October 28-29, ... maps data from mobile eye tracking videos created with ...
(Date:10/23/2015)... Oct. 23, 2015 Research and Markets ( ... "Global Voice Recognition Biometrics Market 2015-2019" report to ... --> The global voice recognition biometrics market to ... --> --> The ... prepared based on an in-depth market analysis with inputs ...
Breaking Biology News(10 mins):