Navigation Links
Stick-on tattoos go electric
Date:8/12/2011

Through a combination of careful theoretical modeling and precise micro-manufacturing, a team of engineers and scientists has developed a new type of ultra-thin, self-adhesive electronics device that can effectively measure data about the human heart, brain waves and muscle activity all without the use of bulky equipment, conductive fluids, or glues.

The researchers have created a new class of micro-electronics with a technology that they call an epidermal electronic system (EES). They have incorporated miniature sensors, light-emitting diodes, tiny transmitters and receivers, and networks of carefully crafted wire filaments into their initial designs.

The technology is presentedalong with initial measurements that researchers captured using the EESin a paper by lead author Dae-Hyeong Kim of the University of Illinois and colleagues in the August 12, 2011, issue of Science.

The EES device was developed by collaborators from the University of Illinois at Urbana-Champaign, Northwestern University, Tufts University, the Institute of High Performance Computing in Singapore, and Dalian University of Technology in China.

"Our goal was to develop an electronic technology that could integrate with the skin in a way that is mechanically and physiologically invisible to the user," says corresponding author John Rogers, a professor in materials science and engineering department at the University of Illinois at Urbana-Champaign. "We found a solution that involves devices we designed to achieve physical properties that match to the epidermis itself. It's a technology that blurs the distinction between electronics and biology."

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.

Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.

The EES designs yield flat devices that are less than 50-microns thickthinner than the diameter of a human hairwhich are integrated onto the polyester backing familiar from stick-on tattoos.

The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours. The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

"The mechanics behind the design for our serpentine-shaped electronics makes the device as soft as the human skin," says Northwestern University engineer Yonggang Huang, also a lead researcher on the project. "The design enables brittle, inorganic semiconductors to achieve extremely vast stretchability and flexibility. Plus, the serpentine design is very useful for self adhesion to any surface without using glues."

While some areas of the body are ill-suited to adhesive electronics, such as the elbow, most regions commonly targeted for medical and experimental studies are ideal, including the forehead, extremities and the chest.

Regions of the body that previously proved difficult to fit with sensors may now be monitored, including the throat, which the researchers studied to observe muscle activity during speech.

The throat experiment yielded enough precision for the research team to differentiate words in vocabulary and even control a voice-activated video game interface with greater than 90 percent accuracy.

"This type of device might provide utility for those who suffer from certain diseases of the larynx," adds Rogers. "It could also form the basis of a sub-vocal communication capability, suitable for covert or other uses."

The current innovation builds upon six years of collaboration between Rogers and Huang, who had earlier partnered to develop flexible electronics for hemispherical camera sensors and other devices that conform to complex shapes.

"This work is really just beginning," adds Rogers. "On the technology side, our focus is on wireless communication and improved solutions for powersuch as batteries, storage capacitors and mechanical energy harvestersto complement the inductive and solar concepts that we demonstrate in the present paper."

The researchers are also exploring clinical approaches, particularly for ailments where sensor size is critical, such as sleep apnea and neonatal care.

Much further into the future, the researchers hope to incorporate microfluidic devices into their technology, opening up a new arena of electronic bandages and enhanced-functioning skin, potentially accelerating wound healing or treating burns and other skin conditions.


'/>"/>

Contact: Josh Chamot
jchamot@nsf.gov
703-292-7730
National Science Foundation
Source:Eurekalert  

Related biology technology :

1. Piezoelectric nanowires allow electrical signals to be produced from mechanical actions
2. Heated AFM tip allows direct fabrication of ferroelectric nanostructures on plastic
3. Discovery opens the door to electricity from microbes
4. Enhanced electrical energy storage may result from professors research
5. Solar-thermal flat-panels that generate electric power
6. Conducting ferroelectrics may be key to new electronic memory
7. Stanford researchers use river water and salty ocean water to generate electricity
8. 3-D printing method advances electrically small antenna design
9. Nanowires exhibit giant piezoelectricity
10. Nanotech milling produces dramatic increase in thermoelectric performance of bulk semiconductor
11. Breakthrough in converting heat waste to electricity
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stick-on tattoos go electric
(Date:2/23/2017)... and SAN FRANCISCO , ... privately-held regenerative medicine company, and Beyond Type 1, a ... type 1 diabetes, today announced a grant from Beyond ... functional cure for type 1 and other insulin-requiring diabetes.  ... has been developing innovative stem cell-derived cell replacement therapies ...
(Date:2/22/2017)... , Feb. 22, 2017  PrimeVax Immuno-Oncology, Inc. ... be presenting at the Annual Biocom Global Life Science ... 2, at 11:15 AM, at the Torrey Pines Lodge, ... to the organizers at Biocom who have chosen our ... symposium of biotechnology companies, investors, and clinical researchers," said ...
(Date:2/22/2017)... ... February 22, 2017 , ... LabRoots , the leading provider ... the world, is pleased to announce the launch of a new scholarship for young ... fields. , This merit-based scholarship is open to all high school seniors, 17 years ...
(Date:2/22/2017)... ... February 22, 2017 , ... Pharma and ... Perkins as European director. Operating from Pennside’s Zurich headquarters, Pennside Partners, GmbH, Mr. ... joins Pennside after more than a decade with leading market research firm, GfK. ...
Breaking Biology Technology:
(Date:1/30/2017)... , Jan. 30, 2017   Invitae Corporation ... growing genetic information companies, today announced that it will ... and provide 2017 guidance on Monday, February 13, 2017, ... that day at 4:45 p.m. Eastern / 1:45 p.m. ... team will briefly review financial results, guidance, and recent ...
(Date:1/25/2017)... , Jan. 25, 2017 The Elements of ... (IAM) lifecycle is comprised of a comprehensive set ... purpose of maintaining digital identities and providing a ... applications. There are significant number of programs opted ... to time by optimizing processes and changing policies. ...
(Date:1/23/2017)... 2017  The latest mobile market research from Acuity ... dramatically. The quarterly average price of a biometric smartphone ... Q4 2016.  There are now 120 sub-$150 models on ... from just 28 a year ago at an average ... Maxine Most , Acuity Market Intelligence Principal, "Biometric Smartphones ...
Breaking Biology News(10 mins):