Navigation Links
Stevens researchers pioneer novel technique to make plasmonic nanogap arrays

In the quest to exploit unique properties at the nanoscale, scientists at Stevens Institute of Technology have developed a novel technique for creating uniform arrays of metallic nanostructures. A team of faculty and students in the Department of Physics and Engineering Physics, led by Dr. Stefan Strauf, appropriated methods from holographic lithography to demonstrate a new approach for scaling up the fabrication of plasmonic nanogap arrays while simultaneously reducing costs and infrastructure. A paper on the technique recently appeared in Nano Letters 11, 2715 (2011).

"Prof. Strauf is doing research at the forefront of physics," says Dr. Rainer Martini, Department Director for Physics and Engineering Physics. "His lab is producing research breakthroughs with impact well beyond his own field as well as providing excellent learning and publishing opportunities for graduate and undergraduate students."

Plasmonic nanogap arrays are essentially uniformly placed metallic nanostructures which feature a tiny air gap between neighbors. By creating strongly confined electrical fields under optical illumination, these tiny air gaps allow scientists to use the arrays in a variety of applications, particularly in the miniaturization of photonic circuits and ultrasensitive sensing. Such sensors could be used to detect the presence of specific proteins or chemicals down to the level of single molecules, or employed in high-resolution microscopy. Nanophotonic circuits, able to transmit huge amounts of information, are considered crucial to bring about the exaflop processing era and a new generation in computing power.

Established fabrication techniques for nanogap arrays have focused on serial methods, which are time-consuming, have a low throughput, and are consequently expensive. Holographic lithography (HL), an optical approach that takes advantage of interference patterns of laser beams to create periodic patterns, had been previously demonstrated to create sub wavelength features. Dr. Strauf's team advanced the HL methodology by using four-beam interference and the concept of a compound lattice to create tunable twin motive shapes into a polymer template, resulting in metallic air gaps down to 7 nm, seventy times smaller than the wavelengths of the blue laser light utilized to write the features.

The Stevens scientists extended the utility of HL to create gaps with results comparable to laborious serial fabrication techniques such as electron beam lithography or focused ion beam milling. Besides being a simpler and more cost-effective production method, their technique does not require a clean room and currently achieves 90% uniformity in the array pattern. Therefore, these innovations provide the foundation for making high-quality, large-scale arrays at a greater speed and lower cost than previously realizable.

"This research project provided me with an opportunity to become an expert with the HL technique," says Xi Zhang, the first author of the Nano Letters article and a PhD candidate. Xi and her fellow students are now measuring the surface enhanced Raman scattering (SERS) effects that result from these arrays and continue to improve the uniformity of the arrays during fabrication. "We just got some excellent results from first SERS experiment, and certainly there are more papers to follow up," she says.

Dr. Strauf is Director of the NanoPhotonics Laboratory (NPL) at Stevens, where he oversees cutting-edge research in the fields of solid-state nanophotonics and nanoelectronics. Research at the lab includes the development of fabrication methods for nanoscale materials and quantum device applications. Recent NPL projects have resulted in papers published on quantum dots and graphene. The lab has received project funding from the Air Force Office of Scientific Research and two National Science Foundation instrumentation grants. Dr. Strauf is also the recipient of the prestigious NSF CAREER Award.


Contact: Christine del Rosario
Stevens Institute of Technology

Related biology technology :

1. Ash Stevens Plans $6 Million Facility Expansion to Bolster CMC Capabilities
2. Stevens team places third in 2010 IEEE/NIST Mobile Microrobotics Challenge
3. Stevens hosts 2010 metro area NEMS/MEMS Workshop
4. Xiaoguang Meng receives honorary master of engineering from Stevens
5. Microfluidic devices advance 3-D tissue engineering at Stevens
6. Nanoimprint lithography NSF grant awarded to micro device lab at Stevens
7. Dr. Stefan Strauf of physics at Stevens receives NSF CAREER Award for quantum research
8. Dr. Frank Fisher of Stevens selected for Fulbright specialist roster
9. ONR funds study of nanoscale wetting dynamics of superhydrophobic surfaces at Stevens
10. Understanding the science of solar-based energy: more researchers are better than one
11. Researchers decode viral process that prepares cells for HIV infection
Post Your Comments:
(Date:12/1/2015)... 2, 2015  Researchers using modern imaging techniques on hearts ... were able to learn about the health conditions of the ... at the annual meeting of the Radiological Society of ... France , unearthed several grave sites dating back to ... France , unearthed several grave sites dating ...
(Date:12/1/2015)... , ... December 01, 2015 ... ... the keynote talks at SPIE Photonics Europe 2016, the premier research conference ... , The event will run 4-7 April 2016 in the Square Brussels ...
(Date:12/1/2015)... , December 1, 2015 ... a touch activated lancet that features Owen Mumford,s unique ... , booth 1403, Unistik® Touch is a touch activated ... --> Owen Mumford, a leading medical device ... of medical devices, available initially in the US before ...
(Date:12/1/2015)... Today the Allen Institute announced the opening ... South Lake Union neighborhood, the city,s biotechnology hub. ... Westlake Avenue North, the 270,000 square foot life sciences ... Science and the Allen Institute for Cell Science. ... the Allen Institute. "We started by building a map ...
Breaking Biology Technology:
(Date:12/1/2015)... Calif. , Dec. 1, 2015 Synaptics ... human interface solutions, today announced a new agreement with ... OEMs with real-world test and development environments that combine ... solutions. The partnership reduces the complexity of FIDO certification ... software permits Synaptics and OEMs to verify FIDO enabled ...
(Date:11/30/2015)... BEACH, Fla. , Nov. 30, 2015 /PRNewswire/ ... as a finalist in this year,s Fierce Innovation Awards:  ... of FierceHealthIT , FierceHealthcare ... was recognized as a finalist in the category ... --> ...
(Date:11/26/2015)... Research and Markets ( ) has ... - Technology and Patent Infringement Risk Analysis" report ... --> Fingerprint sensors using capacitive technology represent ... sensor vendor Idex forecasts an increase of 360% of ... and of the fingerprint sensor market between 2014 and ...
Breaking Biology News(10 mins):