Navigation Links
Stanford: Quantum computing spins closer
Date:11/21/2008

The promise of quantum computing is that it will dramatically outshine traditional computers in tackling certain key problems: searching large databases, factoring large numbers, creating uncrackable codes and simulating the atomic structure of materials.

A quantum step in that direction, if you'll pardon the pun, has been taken by Stanford researchers who announced their success in a paper published in the journal Nature. Working in the Ginzton Laboratory, they've employed ultrafast lasers to set a new speed record for the time it takes to rotate the spin of an individual electron and confirm the spin's new position.

Why does that matter? Existing computers, from laptops to supercomputers, see data as bits of information. Each bit can be either a zero or a one. But a quantum bit can be both zero and one at the same time, a situation known as a superposition state. This allows quantum computers to act like a massively parallel computer in some circumstances, solving problems that are almost impossible for classic computers to handle.

Quantum computing can be accomplished using a property of electrons known as "spin." A single unit of quantum information is the qubit, and can be constructed from a single electron spin, which in this experiment was confined within a nano-sized semiconductor known as a quantum dot.

An electron spin may be described as up or down (a variation of the usual zero and one) and may be manipulated from one state to another. The faster these electrons can be switched, the more quickly numbers can be crunched in a quantum fashion, with its intrinsic advantages over traditional computing designs.

The qubit in the Stanford experiment was manipulated and measured about 100 times faster than with previous techniques, said one of the researchers, David Press, a graduate student in applied physics.

The experiments were conducted at a temperature of almost absolute zero, inside a strong magnetic field produced by a superconducting magnet. The researchers first hit the qubit with laser light of specific frequencies to define and measure the electron spin, all within a few nanoseconds. Then they rotated the spin with polarized light pulses in a few tens of picoseconds (a picosecond is one trillionth of a second). Finally, the spin state was read out with yet another optical pulse.

Similar experiments have been done before, but with radio-frequency pulses, which are slower than laser-light pulses. "The optics were quite tricky," Press said. The researchers had to find a single, specific photon emitted from the qubit in order confirm the spin state of the electron. That photon, however, was clouded in a sea of scattered photons from the lasers themselves.

"The big benefit is to make quantum computing faster," Press said. The experiment "pushed quantum dots up to speed with other qubit candidate systems to ultimately build a quantum computer."

Quantum computers are still years away. In the shorter term, Press said, researchers would like to build a system of tens or hundreds of qubits to simulate the operation of a larger quantum system.


'/>"/>

Contact: Dan Stober
dstober@stanford.edu
650-721-6965
Stanford University
Source:Eurekalert  

Related biology technology :

1. Memoirs of a qubit: Hybrid memory solves key problem for quantum computing
2. First tunable, noiseless amplifier may boost quantum computing, communications
3. Light touch: Controlling the behavior of quantum dots
4. Physicists tweak quantum force, reducing barrier to tiny devices
5. Quantum computing breakthrough arises from unknown molecule
6. Physicists discover how fundamental particles lose track of quantum mechanical properties
7. Stanford researchers hear the sound of quantum drums
8. Harvard University engineers demonstrate quantum cascade laser nanoantenna
9. Argonne researcher studies what makes quantum dots blink
10. Quantum device traps, detects and manipulates the spin of single electrons
11. Yale scientists make 2 giant steps in advancement of quantum computing
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stanford: Quantum computing spins closer
(Date:5/23/2016)... ... May 23, 2016 , ... ... solutions and services based in Aurora, Ohio, has broken ground on a new ... the Research Triangle Park area, this new location solidifies a commitment to business ...
(Date:5/20/2016)... ... ... The leading Regenerative Veterinary Medicine Company, VetStem Biopharma ., is proud ... of their own patients with the VetStem Cell Therapy. Each of these veterinarians has ... patients. , The veterinarians are Dr Ross Rich former owner of Cave Creek ...
(Date:5/20/2016)... MD (PRWEB) , ... May 20, 2016 , ... The ... with Listeria, as reported by Food Safety News on May 12, 2016(1), demonstrates the ... to Ted Olsen, CEO of Baltimore-based biotech firm, PathSensors, Inc. , ...
(Date:5/19/2016)... May 19, 2016 There is ... recover given the relentless pressures in pricing and lack ... the investors circle though - numerous opportunities are up ... today,s session, ActiveWallSt.com,s presents four names in this sector: ... Pharmaceuticals Inc. (NASDAQ: VTAE ), Anthera Pharmaceuticals ...
Breaking Biology Technology:
(Date:3/18/2016)... 2016 --> --> ... Manned & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & ... the border security market and the continuing migration crisis in ... Europe has led visiongain to publish this unique ... --> defence & security companies in the border ...
(Date:3/14/2016)... http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ( ... --> DERMALOG, le leader de l,innovation ... d,empreintes digitales pour l,enregistrement des réfugiés en Allemagne. ... produire des cartes d,identité aux réfugiés. DERMALOG dévoilera ...
(Date:3/9/2016)... 2016 This BCC Research report provides an ... RNA Sequencing (RNA Seq) market for the years 2015, ... and reagents, data analysis, and services. Use ... RNA-Sequencing market such as RNA-Sequencing tools and reagents, RNA-Sequencing ... affecting each segment and forecast their market growth, future ...
Breaking Biology News(10 mins):