Navigation Links
Sophisticated nano-structures assembled with magnets

DURHAM, N.C. -- What do Saturn and flowers have in common?

As shapes, both possess certain symmetries that are easily recognizable in the natural world. Now, at an extremely small level, researchers from Duke University and the University of Massachusetts have created a unique set of conditions in which tiny particles within a solution will consistently assemble themselves into these and other complex shapes.

By manipulating the magnetization of a liquid solution, the researchers have for the first time coaxed magnetic and non-magnetic materials to form intricate nano-structures. The resulting structures can be "fixed," meaning they can be permanently linked together. This raises the possibility of using these structures as basic building blocks for such diverse applications as advanced optics, cloaking devices, data storage and bioengineering.

Changing the levels of magnetization of the fluid controls how the particles are attracted to or repelled by each other. By appropriately tuning these interactions, the magnetic and non-magnetic particles form around each other much like a snowflake forms around a microscopic dust particle.

"We have demonstrated that subtle changes in the magnetization of a fluid can create an environment where a mixture of different particles will self-assemble into complex superstructures," said Randall Erb, fourth-year graduate student. He performed these experiments in conjunction with another graduate student Hui Son, in the laboratory of Benjamin Yellen, assistant professor of mechanical engineering and materials science and lead member of the research team.

The results of the Duke experiments appear in Feb. 19 issue of the journal Nature.

The nano-structures are formed inside a liquid known as a ferrofluid, which is a solution consisting of suspensions of nanoparticles composed of iron-containing compounds. One of the unique properties of these fluids is that they become highly magnetized in the presence of external magnetic fields. The unique ferrofluids used in these experiments were developed with colleagues Bappaditya Samanta and Vincent Rotello at the University of Massachusetts.

"The key to the assembly of these nano-structures is to fine-tune the interactions between positively and negatively magnetized particles," Erb said. "This is achieved through varying the concentration of ferrofluid particles in the solution. The Saturn and flower shapes are just the first published examples of a range of potential structures that can be formed using this technique."

According to Yellen, researchers have long been able to create tiny structures made up of a single particle type, but the demonstration of sophisticated structures assembling in solutions containing multiple types of particles has never before been achieved. The complexity of these nano-structures determines how they can ultimately be used.

"It appears that a rich variety of different particle structures are possible by changing the size, type and or degree of magnetism of the particles," Yellen said.

Yellen foresees the use of these nano-structures in advanced optical devices, such as sensors, where different nano-structures could be designed to possess custom-made optical properties. Yellen also envisions that rings composed of metal particles could be used for antenna designs, and perhaps as one of the key components in the construction of materials that display artificial "optical magnetism" and negative magnetic permeability.

In the Duke experiments, the nano-structures were created by applying a uniform magnetic field to a liquid containing various types of magnetic and non-magnetic colloidal particles contained between transparent glass slides to enable real-time microscopic observations of the assembly process. Because of the unique nature of this "bulk" assembly technique, Yellen believes that the process could easily be scaled up to create large quantities of custom-designed nano-structures in high-volume reaction vessels. However, the trick is to also be able to glue the structures together, because they will fall apart when the external field is turned off, he said.

"The magnetic forces assembling these particles are reversible," Yellen said. "We were able to lock these nano-structures in their intended shapes both by using chemical glues and by simple heating."

The Duke team plans to test different combinations of particles and ferrofluids developed by the University of Massachusetts team to create new types of nano-structures. They also want to try to make even smaller nano-structures to find the limitations of the assembly process, and study the interesting optical properties which are expected from these structures.

"While we have shown that we can get small magnetic particles to form complex and beautiful structures, we believe that based on theory and the results of preliminary experiments, we should be able manipulate even smaller particles by using other magnetic particles and ferrofluids," Yellen said.


Contact: Richard Merritt
Duke University

Related biology technology :

1. Sophisticated soil analysis for improved land use
2. Elekta Chosen to Deliver Sophisticated Brain Mapping Technology to Froedtert Hospital in Milwaukee
3. Elekta Chosen to Deliver Sophisticated Brain Mapping Technology to The Nebraska Medical Center
4. Self-assembled materials form mini stem cell lab
5. New kind of MRI enables study of magnets for computer memory
6. NIST/NIH micromagnets show promise as colorful smart tags for magnetic resonance imaging
7. A researcher of UPV/EHU has designed nanomagnets for industry
8. The next generation: nanomagnets could replace semiconductors
Post Your Comments:
Related Image:
Sophisticated nano-structures assembled with magnets
(Date:11/25/2015)... ANGELES and HOLLISTON, Mass. ... Technology, Inc. (Nasdaq: HART ), a biotechnology company ... that CEO Jim McGorry will present at ... December 1, 2015 at 2:30 p.m. PT. The presentation ... below) for 30 days. Management will also be available ...
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris ... that its business and prospects remain fundamentally strong ... Zoptrex™ (zoptarelin doxorubicin) recently received DSMB recommendation to ... completion following review of the final interim efficacy ... 2 Primary Endpoint in men with heavily pretreated ...
(Date:11/25/2015)... 25, 2015 Orexigen® Therapeutics, Inc. (Nasdaq: ... a fireside chat discussion at the Piper Jaffray 27th ... . The discussion is scheduled for Wednesday, December 2, ... .  A replay will be available for 14 days ... , Julie NormartVP, Corporate Communications and Business Development , ...
(Date:11/25/2015)... CA (PRWEB) , ... November 25, 2015 , ... ... genomics company uBiome, were featured on AngelList early in their initial angel funding ... an AngelList syndicate for individuals looking to make early stage investments in the ...
Breaking Biology Technology:
(Date:10/29/2015)... Oct. 29, 2015  Connected health pioneer, Joseph ... explosion of technology-enabled health and wellness, and the business ... The Internet of Healthy Things . ... smartphones even existed, Dr. Kvedar, vice president, Connected Health, ... care delivery, moving care from the hospital or doctor,s ...
(Date:10/27/2015)... Munich, Germany , ... (ASGM) automatically maps data from mobile eye tracking videos ... so that they can be quantitatively analyzed with SMI,s ... Germany , October 28-29, 2015. SMI,s Automated Semantic ... eye tracking videos created with SMI,s Eye Tracking ...
(Date:10/26/2015)... Oct. 26, 2015  Delta ID Inc., a company ... mobile and PC devices, announced its ActiveIRIS® technology powers ... NX F-02H launched by NTT DOCOMO, INC in ... the second smartphone to include iris recognition technology, after ... NX F-04G in May 2015, world,s first smartphone to ...
Breaking Biology News(10 mins):