Navigation Links
Solar power could get boost from new light absorption design
Date:11/2/2011

Solar power may be on the rise, but solar cells are only as efficient as the amount of sunlight they collect. Under the direction of a new professor at Northwestern University's McCormick School of Engineering and Applied Science, researchers have developed a new material that absorbs a wide range of wavelengths and could lead to more efficient and less expensive solar technology.

A paper describing the findings, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," was published Tuesday in the journal Nature Communications.

"The solar spectrum is not like a laser it's very broadband, starting with UV and going up to near-infrared," said Koray Aydin, assistant professor of electrical engineering and computer science and the paper's lead author. "To capture this light most efficiently, a solar cell needs to have a broadband response. This design allows us to achieve that."

The researchers used two unconventional materials metal and silicon oxide to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light. The use of these materials is unusual because on their own, they do not absorb light; however, they worked together on the nanoscale to achieve very high absorption rates, Aydin said.

The uniquely shaped grating captured a wide range of wavelengths due to the local optical resonances, causing light to spend more time inside the material until it gets absorbed. This composite metamaterial was also able to collect light from many different angles a useful quality when dealing with sunlight, which hits solar cells at different angles as sun moves from east to west throughout the day.

This research is not directly applicable to solar cell technology because metal and silicon oxide cannot convert light to electricity; in fact, the photons are converted to heat and might allow novel ways to control the heat flow at the nanoscale. However, the innovative trapezoid shape could be replicated in semiconducting materials that could be used in solar cells, Aydin said.

If applied to semiconducting materials, the technology could lead to thinner, lower-cost, and more efficient solar cells, he said.


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. NTU and A*STAR Institute of Microelectronics develop cheaper yet efficient thin film solar cells
2. Researchers use carbon nanotubes to make solar cells affordable, flexible
3. Copper film could lower touch screen, led and solar cell costs
4. TU Delft: cheap and efficient solar cell made possible by linked nanoparticles
5. Nature offers key lessons on harvesting solar power, says U of T chemistry professor
6. How to produce flexible CIGS solar cells with record efficiency
7. U of T-led research improves performance of next-generation solar cell technology
8. Oscar Madison approach to solar cells may outshine Felix Unger design
9. Solar industry responsible for lead emissions in developing countries
10. Nano Gold Rush: Researchers use tiny gold particles to boost organic solar cell efficiency
11. Inkjet printing could change the face of solar energy industry
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... - FACIT has announced the creation of a ... Propellon Therapeutics Inc. ("Propellon" or "the Company"), to ... of first-in-class WDR5 inhibitors for the treatment of ... an exciting class of therapies, possessing the potential ... patients. Substantial advances have been achieved with the ...
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... SANTA MONICA, Calif. , June 23, 2016  The Prostate Cancer ... to pioneer increasingly precise treatments and faster cures for prostate cancer. Members of ... 77 institutions across 15 countries. Read More About the ... ... ...
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
Breaking Biology Technology:
(Date:5/20/2016)... -- VoiceIt is excited to announce its new marketing ... working together, VoiceIt and VoicePass will offer an ... slightly different approaches to voice biometrics, collaboration between ... Both companies ... "This marketing and technology partnership allows VoiceIt ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... 27, 2016 Research and ... Biometrics Market 2016-2020"  report to their offering.  , ... The analysts forecast the global multimodal biometrics ... during the period 2016-2020.  Multimodal biometrics ... such as the healthcare, BFSI, transportation, automotive, and ...
Breaking Biology News(10 mins):