Navigation Links
Smaller is better in the viscous zone
Date:10/21/2010

DURHAM, N.C. -- Being the right size and existing in the limbo between a solid and a liquid state appear to be the secrets to improving the efficiency of chemical catalysts that can create better nanoparticles or more efficient energy sources.

When matter is in this transitional state, a catalyst can achieve its utmost potential with the right combination of catalyst particle size and temperature, according to a pair of Duke University researchers. A catalyst is an agent or chemical that facilitates a chemical reaction. It is estimated that more than 90 percent of chemical processes used by industry involve catalysts at some point.

This finding could have broad implications in almost every catalyst-based reaction, according to an engineer and a chemist at Duke who reported their findings on line in the American Chemical Society's journal ACS-NANO. The team found that the surface-to-volume ratio of the catalyst particle its size -- is more important than generally appreciated.

"We found that the smaller size of a catalyst will lead to a faster reaction than if the bulk, or larger, version of the same catalyst is used," said Stefano Curtarolo, associate professor in the Department of Mechanical Engineering and Materials Sciences.

"This is in addition to the usual excess of surface in the nanoparticles," said Curtarolo, who came up with the theoretical basis of the findings three years ago and saw them confirmed by a series of intricate experiments conducted by Jie Liu, Duke professor of chemistry.

"This opens up a whole new area of study, since the thermo-kinetic state of the catalyst has not before been considered an important factor," Curtarolo said. "It is on the face of it paradoxical. It's like saying if a car uses less gas (a smaller particle), it will go faster and further."

Their series of experiments were conducted using carbon nanotubes, and the scientists believe that same principles they described in the paper apply to all catalyst-driven processes.

Liu proved Curtarolo's hypothesis by developing a novel method for measuring not only the lengths of growing carbon nanotubes, but also their diameters. Nanotubes are microscopic "mesh-like" tubular structures that are used in hundreds of products, such as textiles, solar cells, transistors, pollution filters and body armor.

"Normally, nanotubes grow from a flat surface in an unorganized manner and look like a plate of spaghetti, so it is impossible to measure any individual tube," Liu said. "We were able to grow them in individual parallel strands, which permitted us to measure the rate of growth as well as the length of growth."

By growing these nanotubes using different catalyst particle sizes and at different temperatures, Liu was able to determine the "sweet spot" at which the nanotubes grew the fastest and longest. As it turned out, this happened when the particle was in its viscous state, and that smaller was better than larger, exactly as predicted before.

These measurements provided the experimental underpinning of Curtarolo's hypothesis that given a particular temperature, smaller nanoparticles are more effective and efficient per unit area than larger catalysts of the same type when they reside in that dimension between solid and liquid.

"Typically, in this field the experimental results come first, and the explanation comes later," Liu said. "In this case, which is unusual, we took the hypothesis and were able to develop a method to prove it correct in the laboratory."


'/>"/>

Contact: Richard Merritt
richard.merritt@duke.edu
919-660-8414
Duke University
Source:Eurekalert  

Related biology technology :

1. Self-assembled nanowires could make chips smaller and faster
2. Researchers create smaller and more efficient nuclear battery
3. Small ... smaller ... smallest? ASU researchers create molecular diode
4. New silicon-germanium nanowires could lead to smaller, more powerful electronic devices
5. ClearTrial Launches New Service to Bring Speed and Accuracy in Clinical Trial Planning Within Reach of Smaller Biopharma Companies
6. For platinum catalysts, smaller may be better
7. Building a smaller, lighter future: Understanding polymer behaviors below 1 nanometer
8. Tips on how to build a better home for biological parts
9. Understanding the science of solar-based energy: more researchers are better than one
10. Bottoms up: Better organic semiconductors for printable electronics
11. SACHEM Launches 2-D HPLC e-Learning Program : New e-Learning Program Teaches Scientists How to Better Analyze and Prove Product Purity Through Greater Sensitivity and Precision in Identification of Trace Components
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Smaller is better in the viscous zone
(Date:12/9/2016)... 9, 2016 The research report ... players in the  Global Label-Free Array Systems Market  accounted ... in 2015. Players such as Biacore, Agilent Technologies, ForteBio, ... in the global market due to their unmatched product ... Product upgrades and timely product launches are expected to ...
(Date:12/9/2016)... Dec. 9, 2016 China Cord Blood Corporation (NYSE: ... China,s leading provider of cord blood collection, laboratory ... today announced the results of its 2016 Annual General Meeting, ... S.A.R., China . At ... the re-appointment of KPMG Huazhen LLP as the independent auditors ...
(Date:12/9/2016)... According to a new market research report "Oligonucleotide Synthesis Market ... (Research, PCR, Gene, DNA, NGS, Diagnostic, RNAI), End user (Academic, Pharmaceutical, ... is expected to reach USD 2.20 Billion by 2021 from USD ... forecast period. Continue Reading ... ...
(Date:12/8/2016)... This report analyzes the worldwide markets for Biostimulants ... Amino, & Fulvic), Extract Based, and Others. The report also ... & Turf, Row Crops, and Others. The report provides separate ... Japan , Europe , ... , and Rest of World. Annual estimates and forecasts are ...
Breaking Biology Technology:
(Date:12/7/2016)... , Dec. 7, 2016   Veridium ... announced the appointment of new CEO James ... executive with decades of experience, has served in ... Cisco, where he specialized in expanding a pipeline ... technology portfolios. He most recently served as managing ...
(Date:12/2/2016)... , December 1, 2016 ... type (Fingerprint, Voice), Future Technology (Iris Recognition System), ... Region - Global Forecast to 2021", published by ... 442.7 Million in 2016, and is projected to ... a CAGR of 14.06%.      (Logo: ...
(Date:11/29/2016)... 29, 2016   Neurotechnology , a ... recognition technologies, today released FingerCell 3.0, a ... solutions that run on low-power, low-memory microcontrollers. ... less than 128KB of memory, enabling it ... have limited on-board resources, such as: mobile ...
Breaking Biology News(10 mins):