Navigation Links
Slippery slope:Researchers take advice from a carnivorous plant
Date:9/21/2011

Cambridge, Mass. September 21, 2011 After a rain, the cupped leaf of a pitcher plant becomes a virtually frictionless surface. Sweet-smelling and elegant, the carnivore attracts ants, spiders, and even little frogs. One by one, they slide to their doom.

Adopting the plant's slick strategy, a group of applied scientists at Harvard have created a material that repels just about any type of liquid, including blood and oil, and does so even under harsh conditions like high pressure and freezing temperatures.

The bio-inspired liquid repellence technology, described in the September 22 issue of Nature, should find applications in biomedical fluid handling, fuel transport, and anti-fouling and anti-icing technologies. It could even lead to self-cleaning windows and improved optical devices.

"Inspired by the pitcher plant, we developed a new coating that outperforms its natural and synthetic counterparts and provides a simple and versatile solution for liquid and solid repellency," says lead author Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS), Director of the Kavli Institute for Bionano Science and Technology at Harvard, and a Core Faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard.

By contrast, current state-of-the-art liquid repellent surfaces have taken cues from a different member of the plant world. The leaves of the lotus resist water due to the tiny microtextures on the surface; droplets balance on the cushion of air on the tips of the surface and bead up.

The so-called lotus effect, however, does not work well for organic or complex liquids. Moreover, if the surface is damaged (e.g., scratched) or subject to extreme conditions, liquid drops tend to stick to or sink into the textures rather than roll away. Finally, it has proven costly and difficult to manufacture surfaces based on the lotus strategy.

The pitcher plant takes a fundamentally different approach. Instead of using burr-like, air-filled nanostructures to repel water, the plant locks in a water layer, creating a slick coating on the top. In short, the fluid itself becomes the repellent surface.

"The effect is similar to when a car hydroplanes, the tires literally gliding on the water rather than the road," says lead author Tak-Sing Wong, a postdoctoral fellow in the Aizenberg lab. "In the case of the unlucky ants, the oil on the bottom of their feet will not stick to the slippery coating on the plant. It's like oil floating on the surface of a puddle."

Inspired by the pitcher plant's elegant solution, the scientists designed a strategy for creating slippery surfaces by infusing a nano/microstructured porous material with a lubricating fluid. They are calling the resulting bio-inspired surfaces "SLIPS" (Slippery Liquid-Infused Porous Surfaces).

"Like the pitcher plant, SLIPS are slippery for insects, but they are now designed to do much more: they repel a wide variety of liquids and solids," says Aizenberg. SLIPS show virtually no retention, as very little tilt is needed to coax the liquid or solid into sliding down and off the surface.

"The repellent fluid surface offers additional benefits, as it is intrinsically smooth and free of defects," says Wong. "Even after we damage a sample by scraping it with a knife or blade, the surface repairs itself almost instantaneously and the repellent qualities remain, making SLIPS self-healing." Unlike the lotus, the SLIPS can be made optically transparent, and therefore ideal for optical applications and self-cleaning, clear surfaces.

In addition, the near frictionless effect persists under extreme conditions: high pressures (as much as 675 atmospheres, equivalent to seven kilometers under the sea) and humidity, and in colder temperatures. The team conducted studies outside after a snowstorm; SLIPS withstood the freezing temperatures and even repelled ice.

"Not only is our bio-inspired surface able to work in a variety of conditions, but it is also simple and cheap to manufacture," says co-author Sung Hoon Kang, a Ph.D. candidate in the Aizenberg lab. "It is easily scalable because you can choose just about any porous material and a variety of liquids."

To see if the surface was truly up to nature's high standards, they even did a few experiments with ants. In tests, the insects slid off the artificial surface or retreated to safer ground after only a few timorous steps.

The researchers anticipate that the pitcher plant-inspired technology, for which they are seeking a patent, could one day be used for fuel- and water-transport pipes, and medical tubing (such as catheters and blood transfusion systems), which are sensitive to drag and pressure and are compromised by unwanted liquid-surface interactions. Other potential applications include self-cleaning windows and surfaces that resist bacteria and other types of fouling (such as the buildup that forms on ship hulls). The advance may also find applications in ice-resistant materials and may lead to anti-sticking surfaces that repel fingerprints or graffiti.

"The versatility of SLIPS, their robustness and unique ability to self-heal makes it possible to design these surfaces for use almost anywhere, even under extreme temperature and pressure conditions," says Aizenberg. "It potentially opens up applications in harsh environments, such as polar or deep sea exploration, where no satisfactory solutions exist at present. Everything SLIPS!"


'/>"/>

Contact: Michael Patrick Rutter
mrutter@seas.harvard.edu
617-496-3815
Harvard University
Source:Eurekalert  

Related biology technology :

1. VIDEO: Nasal Allergy Experts Offer Free Advice for Back to School Sneezin
2. Healthy Advice Networks Announces Improved Patient Outcomes in Physicians Offices with Healthy Advice Programs
3. Healthy Advice Networks Achieves Strong Growth Despite Challenging Economy
4. Advice to the new administration: UM foreign and domestic policy guide
5. Cancer detection from an implantable, flexible LED
6. Norman R. Farnsworth, Renowned Medicinal Plant Researcher, Dies at 81
7. New Partnership Bolsters Relivs Access to Plant Biotech Research
8. University of Muenster Bridges 1st Patient to Transplant with SynCardias Total Artificial Heart
9. QinetiQ North America Gains New Insights into Plant Growth and Sustainable Life Support on Final Shuttle Flight
10. In the battle to relieve back aches, Cornell researchers create bioengineered spinal disc implants
11. AllograftPossibilities.org Meets Unmet Need for Consumer-Oriented Information on Tissue Donation, Transplantation on the Internet
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Slippery slope:Researchers take advice from a carnivorous plant
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, ... Pennsylvania Convention Center and will showcase its product’s latest features from June 26 ... presenting a scientific poster on Disrupting Clinical Trials in The Cloud during the ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining centers ... The result of a collaboration among several companies with expertise in toolholding, cutting ...
(Date:6/23/2016)... India , June 23, 2016 ... media market research report to its pharmaceuticals section ... profiles, product details and much more. ... spread across 151 pages, profiling 15 companies and ... available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
(Date:6/22/2016)... Research and Markets has announced the addition of the "Biomarkers: ... The global biomarkers market has grown ... market is expected to grow at a five-year compound annual growth ... billion in 2015 to $96.6 billion in 2020. ... 2020) are discussed. As well, new products approved in 2013 and ...
Breaking Biology Technology:
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
(Date:3/29/2016)... , March 29, 2016 LegacyXChange, ... LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to announce ... used in a variety of writing instruments, ensuring athletes ... originally created collectibles from athletes on LegacyXChange will be ... of the DNA. Bill Bollander , ...
(Date:3/22/2016)... , March 22, 2016 ... report "Electronic Sensors Market for Consumer Industry by Type ... Others), Application (Communication & IT, Entertainment, Home ... Global Forecast to 2022", published by MarketsandMarkets, ... expected to reach USD 26.76 Billion by ...
Breaking Biology News(10 mins):