Navigation Links
Silicon sponge improves lithium-ion battery performance
Date:7/10/2014

RICHLAND, Wash. The lithium-ion batteries that power our laptops and electric vehicles could store more energy and run longer on a single charge with the help of a sponge-like silicon material.

Researchers developed the porous material to replace the graphite traditionally used in one of the battery's electrodes, as silicon has more than 10 times the energy storage capacity of graphite. A paper describing the material's performance as a lithium-ion battery electrode was published today in Nature Communications.

"Silicon has long been sought as a way to improve the performance of lithium-ion batteries, but silicon swells so much when it is charged that it can break apart, making a silicon electrode inoperable," said Pacific Northwest National Laboratory Fellow Ji-Guang "Jason" Zhang. "The porous, sponge-like material we've developed gives silicon the room it needs to expand without breaking."

Room for improvement

Rechargeable lithium-ion batteries have two electrodes: one that's positively charged and made of lithium and another that's negative and typically consists of graphite. Electricity is generated when electrons flow through a wire that connects the two. To control the electrons, positively charged lithium atoms which scientists call ions - shuffle from one electrode to the other through another path: the electrolyte solution in which the electrodes sit.

The chemistry of lithium-ion batteries limits how much energy they can store. To increase the battery's energy capacity, researchers are looking at new materials such as silicon. A lithium-ion battery with a silicon electrode could last about 30 percent longer than one with a graphite electrode. Today's average electric vehicle could drive about 130 miles on a single charge if it used a lithium-ion battery with PNNL's silicon electrode.

Unfortunately, silicon expands as much as three times in size when it charges, creating pressure within the material that causes it to break. Many scientists have attempted to make tiny, nano-sized battery components with the idea that the smaller size would give silicon enough room to expand, but these efforts haven't produced market-ready technologies.

A sponge solution

Zhang and his PNNL colleagues wondered if a sponge-like silicon electrode would do the trick. Others had etched pores into a silicon electrode's surface, but hadn't succeeded in creating holes throughout the material. So they approached Michael Sailor, a University of California, San Diego chemist whose research includes using porous silicon to detect pollutants and deliver drugs, for help. PNNL used Sailor's method to create porous silicon placing thin sheets in a chemical bath to etch out tiny holes throughout the material and then coated the result with a thin layer of conductive carbon to make their electrodes.

Next, the team collaborated with materials scientist Chongmin Wang, who specializes in using in-situ transmission electron microscopes at DOE's EMSL, the Environmental Molecular Sciences Laboratory at PNNL. Wang uses powerful microscopes to record close-up videos of tiny batteries, allowing researchers to better understand the physical and chemical changes that batteries undergo as they operate. Wang put the team's sponge-like, carbon-coated silicon electrode through a series of charges and discharges under the microscope's careful eye.

Space to grow

The team observed that while being charged, the new electrode mostly expanded into the empty spaces created by the material's porous structure. The outside shape of the electrode only expanded by 30 percent much less than the 300 percent usually seen in silicon electrodes. And the new electrode didn't break down. After more than 1,000 charge-and-discharge cycles, the electrode maintained more than 80 percent of its initial energy storage capacity.

Next, Zhang and his colleagues plan to develop a larger prototype battery with their silicon sponge electrode. Part of that effort will involve creating a more streamlined production process so their new electrode can be made at a reasonable cost.


'/>"/>

Contact: Franny White
franny.white@pnnl.gov
509-375-6904
DOE/Pacific Northwest National Laboratory
Source:Eurekalert

Related biology technology :

1. Applied Silicone Launches Ultra-Soft LSR
2. In-depth Research on China Organic Silicon Industry, 2013-2017 (Update Version)
3. Amedica Signs Agreement with Kyocera for Commercial Manufacture of Silicon Nitride Medical Devices
4. Stanford scientists create a low-cost, long-lasting water splitter made of silicon and nickel
5. New device stores electricity on silicon chips
6. NIST/JQI team gets the edge on photon transport in silicon
7. Brainwave Signal Interpretation Software Company EyeMynd Announces Move to Silicon Valley
8. MarketPublishers.com Added New Report on Silicon Nitride (CAS 12033-89-5) Market to Its Catalogue
9. NASA Scientists and Silicon Valley Space Center Partners Make Home Team Bid for Moffett Federal Airfield Development
10. MarketPublishers.com Added New Report on Silicon Tetrafluoride (CAS 7783-61-1) Market to Its Catalogue
11. Next Silicon Valley BioTalks Tackles “Is EDC Becoming a Commodity?” at Onyx Pharmaceuticals HQ
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2016)... ... May 06, 2016 , ... Crucial ... Clinical Studio Version 4.1, greatly improves performance of the platform. In particular, Version ... generate tremendous volumes of data to be collected on a per patient basis. ...
(Date:5/5/2016)... BLUE BELL, Pa. , May 5, 2016 /PRNewswire/ ... X. Powers and Lorna Weir launching ... atypical, un-agency way? Because they believe that truly helping ... dynamic world of healthcare now demands a different type ... multidisciplinary strategy lab serving the pharmaceutical, biotechnology and medical ...
(Date:5/4/2016)... , ... May 04, 2016 , ... Proove Biosciences, ... announce a strategic partnership with McGill University . The partnership is designed to ... market in order to help patients in pain. With the new agreement, researchers at ...
(Date:5/4/2016)... ... May 04, 2016 , ... PBI-Gordon Corporation is pleased to ... , Doug began his career at PBI-Gordon in February 1988, after finishing his ... variety of roles, ranging from customer service to national product manager, to helping develop, ...
Breaking Biology Technology:
(Date:3/15/2016)... 2016 --> --> ... Market Research "Digital Door Lock Systems Market - Global Industry ... the global digital door lock systems market in terms of ... is forecast to grow at a CAGR of 31.8% during ... medium enterprises (MSMEs) across the world and high industrial activity ...
(Date:3/11/2016)... 2016 --> ... "Image Recognition Market by Technology (Pattern Recognition), by Component ... Deployment Type (On-Premises and Cloud), by Industry Vertical and ... MarketsandMarkets, the global market is expected to grow from ... by 2020, at a CAGR of 19.1%. ...
(Date:3/9/2016)... BEACH GARDENS, Fla. , March 9, 2016 ... identity management authentication and enrollment solutions, today announced ... DigitalPersona ® Altus multi-factor authentication ... IT and InfoSec managers to step-up security where ... Washington, DC . ...
Breaking Biology News(10 mins):