Navigation Links
Silicon-coated nanonets could build a better lithium-ion battery

Chestnut Hill, Mass. (February 15, 2010) A tiny scaffold-like titanium structure of Nanonets coated with silicon particles could pave the way for faster, lighter and longer-lasting Lithium-ion batteries, according to a team of Boston College chemists who developed the new anode material using nanotechnology.

The web-like Nanonets developed in the lab of Assistant Professor of Chemistry Dunwei Wang offer a unique structural strength, more surface area and greater conductivity, which produced a charge/re-charge rate five to 10 times greater than typical Lithium-ion anode material, a common component in batteries for a range of consumer electronics, according to findings published in the current online edition of the American Chemical Society journal Nano Letters.

In addition, the Nanonets proved exceptionally durable, showing a negligible drop-off in capacity during charge and re-charge cycles. The researchers observed an average of 0.1% capacity fade per cycle between the 20th and the 100th cycles.

"As researchers pursue the next generation of re-chargeable Lithium-ion battery technology, a premium has been placed on increased power and a greater battery life span," said Wang. "In that context, the Nanonet device makes a giant leap toward those two goals and gives us a superior anode material."

Lithium-ion batteries are commonly used in consumer electronics devices. This type of rechargeable battery allows Lithium ions to move from the anode electrode to the cathode when in use. When charged, the ions move from cathode back to the anode.

The structure and conductivity of the Nanonets improved the ability to insert and extract Lithium ions from the particulate silicon coating, the team reported. Running at a charge/discharge rate of 8,400 milliamps per gram (mA/g) which is approximately five to 10 times greater than similar devices the specific capacity of the material was greater than 1,000 milliamps-hour per gram (mA-h/g). Typically, laptop Lithium-ion batteries are rated anywhere between 4,000 and 12,000 mA/h, meaning it would only take between four and 12 grams of the Nanonet anode material to achieve similar capacity.

Wang said the capability to preserve the crystalline titanium silicon core during the charge/discharge process was the key to achieving the high performance of the Nanonet anode material. Additional research in his lab will examine the performance of the Nanonet as a cathode material.


Contact: Ed Hayward
Boston College

Related biology technology :

1. Scientists grow nanonets able to snare added energy transfer
2. Marriage of microfluidics and optics could advance lab-on-a-chip devices
3. New fiber nanogenerators could lead to electric clothing
4. Simple test could offer cheap solution to detecting landmines
5. Ozone hole healing could cause further climate warming
6. Painless plasma jets could replace dentists drill
7. Minimally Invasive Repair of Ruptured Aortic Aneurysm Could Save More Lives than Surgery
8. Simple test could offer cheap solution to detecting landmines
9. Rock-breathing bacteria could generate electricity and clean up oil spills
10. New silicon-germanium nanowires could lead to smaller, more powerful electronic devices
11. New technology could boost disease detection tests speed and sensitivity
Post Your Comments:
Related Image:
Silicon-coated nanonets could build a better lithium-ion battery
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
(Date:6/23/2016)... , June 23, 2016 ... Hematology Review, 2016;12(1):22-8 ... , the peer-reviewed journal from touchONCOLOGY, Andrew ... escalating cost of cancer care is placing an ... result of expensive biologic therapies. With the patents ...
Breaking Biology Technology:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/26/2016)... -- Research and Markets has announced the ...  report to their offering.  , ,     (Logo: ... forecast the global multimodal biometrics market to grow ... 2016-2020.  Multimodal biometrics is being implemented ... healthcare, BFSI, transportation, automotive, and government for controlling ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
Breaking Biology News(10 mins):