Navigation Links
Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices
Date:3/18/2013

Daejeon, Republic of Korea, March 18, 2013 -- Nonvolatile memory that can store data even when not powered is currently used for portable electronics such as smart phones, tablets, and laptop computers. Flash memory is a dominant technology in this field, but its slow writing and erasing speed has led to extensive research into a next-generation nonvolatile memory called Phase-Change Random Access Memory (PRAM), as PRAM's operating speed is 1,000 times faster than that of flash memory.

PRAM uses reversible phase changes between the crystalline (low resistance) and amorphous (high resistance) state of chalcogenide materials, which corresponds to the data "0" and "1," respectively. Although PRAM has been partially commercialized up to 512 Mb by Samsung Electronics Co., Ltd., its writing current should be decreased by at least one-third of its present level for the mass production of mobile electronics applications.

A team of Professors Keon Jae Lee and Yeon Sik Jung in the Department of Materials Science and Engineering at KAIST has developed phase-change memory with low power consumption (below 1/20th of its present level) by employing self-assembled block copolymer (BCP) silica nanostructures. Their work was published under the title "Self-Assembled Incorporation of Modulated Block Copolymer Nanostructures in Phase-Change Memory for Switching Power Reduction" in the March issue of ACS Nano, a monthly peer-reviewed scientific journal.

BCP is the mixture of two different polymer materials, which can easily create self-ordered arrays of sub-20 nm features through simple spin-coating and plasma treatments. PRAM can lower switching power consumption by making the contact area smaller between the heating layer and phase change materials. Professor Lee's team successfully decreased the size of the contact area and the level of power consumption by incorporating self-assembled silica nanostructures on top of conventional phase-change materials. Interestingly, these self-assembled nanomaterials are able to reduce power much more than expected with localized nano-switching mechanisms.

Professor Keun-Jae Lee said, "This is a very good example that self-assembled, bottom-up nanotechnology can actually enhance the performance of electronic devices. We also achieved a significant power reduction through a simple process that is compatible with conventional device structures and existing lithography tools."

The research team is currently investigating self-assembled BCP applications for resistive random access memory and flexible electronic devices.


'/>"/>

Contact: Lan Yoon
hlyoon@kaist.ac.kr
82-423-502-295
The Korea Advanced Institute of Science and Technology (KAIST)
Source:Eurekalert  

Related biology technology :

1. First-of-its-kind self-assembled nanoparticle for targeted and triggered thermo-chemotherapy
2. Forging a new periodic table using nanostructures
3. Harvards Wyss Institute team creates versatile 3d nanostructures using DNA bricks
4. Entropy can lead to order, paving the route to nanostructures
5. 3-dimensional view of 1-dimensional nanostructures
6. FASTMOUNT™ Adapter Enables Faster Connection of TriClamp®-Type Equipment to Mounting Flanges
7. Invisible tool enables new quantum experiments
8. NDIS Approval of the Promega PowerPlex(R) Y23 System Enables More Usable Profiles in Less Time
9. Krishagni Enables University of New South Wales (Australia) to Adopt caTissue Plus
10. Formedix Partners with Perceptive Informatics for Forthcoming Webcast, “Four Secrets to Using CDISC Standards to Enable Clinical Trial Efficiencies”
11. New portable device enables RNA detection from ultra-small sample in only 20 minutes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices
(Date:8/15/2017)... ... August 15, 2017 , ... Pittcon is pleased to once ... scientific instruments. This year’s symposium, organized by the Pittcon 2018 program chair, Annette ... Applications.” This dynamic presentation will discuss novel ionization processes, high throughput IMS-MS technologies, ...
(Date:8/15/2017)... ... August 15, 2017 , ... Coffea arabica ... biotic and abiotic factors. During this educational webinar, participants will learn about the ... as gain a better understanding of how genomics is important for coffee breeding ...
(Date:8/14/2017)... ... 14, 2017 , ... The Conference Forum has confirmed the one-day ... on September 6, 2017 at the Marriott Copley Place in Boston, MA. , Returning ... and Regulatory Strategy, Pfizer Innovative Research Lab, Pfizer, who leads 19 industry speakers in ...
(Date:8/11/2017)... , ... August 11, 2017 , ... ... production, and, in particular, more natural alternatives to synthetic ingredients,” said Matt Hundt, ... Third Wave, with the established manufacturing presence and know-how of Biorigin will allow ...
Breaking Biology Technology:
(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
(Date:4/6/2017)... April 6, 2017 Forecasts by ... Document Readers, by End-Use (Transportation & Logistics, Government & ... Gas & Fossil Generation Facility, Nuclear Power), Industrial, Retail, ... Are you looking for a definitive report ... ...
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
Breaking Biology News(10 mins):