Navigation Links
Seeing the quantum in chemistry: JILA scientists control chemical reactions of ultracold molecules
Date:2/11/2010

BOULDER, Colo. Physicists at JILA have for the first time observed chemical reactions near absolute zero, demonstrating that chemistry is possible at ultralow temperatures and that reaction rates can be controlled using quantum mechanics, the peculiar rules of submicroscopic physics.

The new results and techniques, described in the Feb. 12 issue of Science,* will help scientists understand previously unknown aspects of how molecules interact, a key to advancing biology, creating new materials, producing energy and other research areas. The new JILA work also will aid studies of quantum gases (in which particles behave like waves) and exotic physics spanning the quantum and macroscopic worlds. It may provide practical tools for "designer chemistry" and other applications such as precision measurements and quantum computing.

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder. A NIST theorist at the Joint Quantum Institute, a collaborative venture of NIST and the University of Maryland, also contributed to the research.

"It's perfectly reasonable to expect that when you go to the ultracold regime there would be no chemistry to speak of," says NIST physicist Deborah Jin, leader of one JILA group involved in the experiments. "This paper says no, there's a lot of chemistry going on."

"We are observing a new fundamental aspect of chemistryit gives us a new 'knob' to understand and control reactions," adds NIST physicist Jun Ye, leader of the second JILA group involved in the research.

The Science paper is a follow-up to the same research team's 2008 report of the first high-density gas of stable, strongly interacting ultracold molecules, each consisting of two different atoms bonded together (see www.nist.gov/public_affairs/releases/ultracold_polar_molecules.html). Ultracold molecules are a hot research area because they may offer more diverse insights and applications than ultracold atoms, which scientists have deftly manipulated for more than 20 years.

Scientists have long known how to control the internal states of molecules, such as their rotational and vibrational energy levels. In addition, the field of quantum chemistry has existed for decades to study the effects of the quantum behavior of electrons and nucleiconstituents of molecules. But until now scientists have been unable to observe direct consequences of quantum mechanical motions of whole molecules on the chemical reaction process. Creating simple molecules and chilling them almost to a standstill makes this possible by presenting a simpler and more placid environment that can reveal subtle, previously unobserved chemical phenomena.

By precisely controlling the ultracold molecules' internal stateselectronic energy levels, vibrations, rotations and nuclear spin (or angular momentum)while also controlling the molecular motions at the quantum level, JILA scientists can study how the molecules scatter or interact with each other quantum mechanically. They were able to observe how the quantum effects of the molecule as a whole dictate reactivity. This new window into molecular behavior has allowed the observation of long-range interactions in which quantum mechanics determines whether two molecules should come together to react or stay apart. Thus the JILA work pushes the field in new directions and expands the standard conception of chemistry.

The JILA quantum chemistry experiments were performed with a gas containing up to 1 trillion molecules per cubic centimeter at temperatures of a few hundred billionths of a Kelvin (nanokelvins) above absolute zero (minus 273 degrees Celsius or minus 459 degrees Fahrenheit). Each molecule consists of one potassium atom and one rubidium atom. The molecules have a negative electric charge on the potassium side and a positive charge on the rubidium side, so they can be controlled with electric fields. By measuring how many molecules are lost over time from a gas confined inside a laser-based optical trap, at different temperatures and under various other conditions, the JILA team found evidence of heat-producing chemical reactions in which the molecules must have exchanged atoms, broken chemical bonds, and forged new bonds. Theoretical calculations of long-range quantum effects agree with the experimental observations.

In conventional chemistry at room temperature, molecules may collide and react to form different compounds, releasing heat. In JILA's ultracold experiments, quantum mechanics reigns and the molecules spread out as ethereal rippling waves instead of acting as barbell-like solid particles. They do not collide in the conventional sense. Rather, as their quantum mechanical wave properties overlap, the molecules sense each other from as much as 100 times farther apart than would be expected under ordinary conditions. At this distance the molecules either scatter from one another or, if quantum conditions are right, swap atoms. Scientists expect to be able to control long-range interactions by creating molecules with specific internal states and "tuning" their reaction energies with electric and magnetic fields.

The JILA team produced a highly dense molecular gas and found that, although molecules move slowly at ultralow temperatures, reactions can occur very quickly. However, reactions can be suppressed using quantum mechanics. For instance, a cloud of molecules in the lowest-energy electronic, vibrational and rotational states reacts differently if the nuclear spins of some molecules are flipped. If a cloud of molecules is divided 50/50 into two different nuclear spin states, reactions proceed 10 to 100 times faster than if all molecules possess the same spin state. Thus, by purifying the gas (by preparing all molecules in the same spin state), scientists can deliberately suppress reactions.

The JILA experimental team attributes these results to the fact the molecules are fermions, one of two types of quantum particles found in nature. (Bosons are the second type.) Two identical fermions cannot be in the same place at the same time. This quantum behavior of fermions manifests as a suppression of the chemical reaction rate in the ultralow temperature gas. That is, molecules with identical nuclear spins are less likely to approach each other and react than are particles with opposite spins.


'/>"/>

Contact: Laura Ost
laura.ost@nist.gov
303-497-4880
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Imaging quantum entanglement
2. Yale scientists make 2 giant steps in advancement of quantum computing
3. Quantum device traps, detects and manipulates the spin of single electrons
4. Argonne researcher studies what makes quantum dots blink
5. Harvard University engineers demonstrate quantum cascade laser nanoantenna
6. Stanford researchers hear the sound of quantum drums
7. Physicists discover how fundamental particles lose track of quantum mechanical properties
8. Quantum computing breakthrough arises from unknown molecule
9. Physicists tweak quantum force, reducing barrier to tiny devices
10. Light touch: Controlling the behavior of quantum dots
11. First tunable, noiseless amplifier may boost quantum computing, communications
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Seeing the quantum in chemistry: JILA scientists control chemical reactions of ultracold molecules
(Date:2/9/2016)... ... 09, 2016 , ... With a presidential election in November and the future ... bring together over 500 top healthcare leaders for a night and day of debates ... by MBA students of the University of Pennsylvania’s Wharton School, will be held February ...
(Date:2/9/2016)... ... 2016 , ... Tunnell Consulting, Inc. announced that Frédéric Lefebvre has joined the ... acquiring new accounts and work closely with existing Tunnell clients throughout Europe to ensure ... European clients more than 15 years of experience in the pharmaceutical industry, a thorough ...
(Date:2/9/2016)... NEW YORK , Feb. 9, 2016 ... market analyzes the current and future prospects of the ... of this report include companies engaged in the manufacture ... comprises an executive summary with a market snapshot providing ... the scope of this report. This section also provides ...
(Date:2/8/2016)... - BIOREM Inc. (TSXV: BRM) ("Biorem" or "the Company") today ... technology companies in the TSX Venture 50 TM . ... the TSX Venture Exchange, in each of five major industry ... & life sciences, diversified industries and technology – based on ... investment, market cap growth, trading volume and analyst coverage. All ...
Breaking Biology Technology:
(Date:2/4/2016)... 4, 2016 The field of Human ... the most popular hubs of the biotechnology industry. ... huge studies of human microbiota, have garnered a ... the microbiome space has literally exploded in terms ... This report focuses on biomedical aspects of research, ...
(Date:2/3/2016)... http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) ... "Emotion Detection and Recognition Market by Technology ... Tools (Facial Expression, Voice Recognition and Others), ... Global forecast to 2020" report to ... ) has announced the addition of the ...
(Date:2/2/2016)... 2, 2016 Technology Enhancements Accelerate Growth of X-ray ... the digital and computed radiography markets in ... Indonesia (TIM). It provides an ... as well as regional market drivers and restraints. The ... penetration and market attractiveness, both for digital and computed ...
Breaking Biology News(10 mins):