Navigation Links
Search for advanced materials aided by discovery of hidden symmetries in nature

A new way of understanding the structure of proteins, polymers, minerals, and engineered materials will be published in the May 2011 issue of the journal Nature Materials. The discovery by two Penn State University researchers is a new type of symmetry in the structure of materials, which the researchers say greatly expands the possibilities for discovering or designing materials with desired properties. The research is expected to have broad relevance in many development efforts involving physical, chemical, biological, or engineering disciplines including, for example, the search for advanced ferroelectric ferromagnet materials for next-generation ultrasound devices and computers. The paper describing the research will be posted early online by the journal on 3 April 2011, prior to its publication in the journal's May 2011 print edition.

Before the publication of this paper, scientists and engineers had five different types of symmetries to use as tools for understanding the structures of materials whose building blocks are arranged in fairly regular patterns. Four types of symmetries had been known for thousands of years -- called rotation, inversion, rotation inversion, and translation -- and a fifth type -- called time reversal -- had been discovered about 60 years ago. Now, Gopalan and Litvin have added a new, sixth, type, called rotation reversal. As a result, the number of known ways in which the components of such crystalline materials can be combined in symmetrical ways has multiplied from no more than 1,651 before to more than 17,800 now. "We mathematically combined the new rotation-reversal symmetry with the previous five symmetries and now we know that symmetrical groups can form in crystalline materials in a much larger number of ways," said Daniel B. Litvin, distinguished professor of physics, who coauthored the study with Venkatraman Gopalan, professor of materials science and engineering.

The new rotation-reversal symmetry enriches the mathematical language that researchers use to describe a crystalline material's structure and to predict its properties. "Rotation reversal is an absolutely new approach that is different in that it acts on a static component of the material's structure, not on the whole structure all at once," Litvin said. "It is important to look at symmetries in materials because symmetry dictates all natural laws in our physical universe."

The most simple type of symmetry -- rotation symmetry -- is obvious, for example, when a square shape is rotated around its center point: the square shows its symmetrical character by looking exactly the same at four points during the rotation: at 90 degrees, 180 degrees, 270 degrees, and 360 degrees. Gopalan and Litvin say their new rotation-reversal symmetry is obvious, as well, if you know where to look.

The "eureka moment" of the discovery occurred when Gopalan recognized that the simple concept of reversing the direction of a spiral-shaped structure from clockwise to counterclockwise opens the door to a distinctly new type of symmetry. Just as a square shape has the quality of rotation symmetry even when it is not being rotated, Gopalan realized that a spiral shape has the quality of rotation-reversal symmetry even when it is not being physically forced to rotate in the reverse direction. Their further work with this rotation-reversal concept revealed many more structural symmetries than previously had been recognized in materials containing various types of directionally oriented structures. Many important biological molecules, for example, are said to be either "right handed" or "left handed," including DNA, sugars, and proteins.

"We found that rotation-reversal symmetry also exists in paired structures where the partner components lean toward each other, then away from each other in paired patterns symmetrically throughout a material," Gopalan said. These "tilting octahedral" structures are common in a wide variety of crystalline materials, where all the component structures are tightly interconnected by networks of shared atoms. The researchers say it is possible that components of materials with rotation-reversal symmetry could be engineered to function as on/off switches for a variety of novel applications.

The now-much-larger number of possible symmetry groups also is expected to be useful in identifying materials with unusual combinations of properties. "For example, the goal in developing a ferroelectric ferromagnet is to have a material in which the electrical dipoles and the magnetic moments coexist and are coupled in the same material -- that is, a material that allows electrical control of magnetism -- which would be very useful to have in computers," Gopalan said. The addition of rotation-reversal symmetry to the materials-science toolbox may help researchers to identify and search for structures in materials that could have strong ferroelectric and ferromagnetic properties.

Gopalan and Litvin said a goal of their continuing research is to describe each of the more than 17,800 different combinations of the six symmetry types to give materials scientists a practical new tool for significantly increasing the efficiency and effectiveness in finding novel materials. The team also plans to conduct laboratory experiments that make use of their theoretical work on rotation-reversal symmetry. "We have done some predictions, we will test those predictions experimentally," Litvin said. "We are in the very early stages of implementing the results we have described in our new theory paper." Gopalan said, for example, that he has predicted new forms for optical properties in the commonplace quartz crystals that are used widely in watches and electronic equipment, and that his group now is testing these predictions experimentally.


Contact: Barbara Kennedy
Penn State

Related biology technology :

1. TGen and Scottsdale Healthcare researchers discover microRNA role in brain metastasis
2. Transgenomic, Inc. Presentations to Describe High-Sensitivity Detection of Cancer Biomarkers at the 2011 American Association for Cancer Research Meeting
3. Carnegie Mellon researchers electrify polymerization
4. LasikPlus® Research Reveals Excellent Results From Modern LASIK
5. Stanford researchers use river water and salty ocean water to generate electricity
6. Marshall Edwards to Report new Data on Mitochondrial Inhibitor Program at American Association for Cancer Research Annual Meeting
7. Sigma® Life Science Joins AMDeCs Vendor Partnership Program, Further Enhancing Value to Academic Medical Research Centers
8. Tibotec Advances Global Clinical Research Program for TMC435 in HCV; Will Present Four Abstracts Evaluating Safety and Efficacy at EASL
9. UBC researchers develop new model to predict the optical properties of nano-structures
10. Ontario Institute for Cancer Research Announces Investment in Microfluidics Technology for the Discovery of Anti-Cancer Drugs
11. Tengion Announces Addition of Two Renal Experts to Research & Development Advisors Panel
Post Your Comments:
Related Image:
Search for advanced materials aided by discovery of hidden symmetries in nature
(Date:11/24/2015)... RALEIGH, N.C. , Nov. 24, 2015  Clintrax Global, Inc., ... Raleigh, North Carolina , today announced that the company has ... earnings represented a 391% quarter on quarter growth posted for Q3 ... Kingdom and Mexico , with the ... place in December 2015. --> United Kingdom ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Financial Officer, will participate in the Piper Jaffray 27 th ... NY on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 ...
(Date:11/24/2015)... Nov. 24, 2015  Twist Bioscience, a company ... Leproust, Ph.D., Twist Bioscience chief executive officer, will ... on December 1, 2015 at 3:10 p.m. Eastern ... City. --> --> ... Twist Bioscience is on Twitter. Sign up to ...
(Date:11/24/2015)... - ProMetic Life Sciences Inc. (TSX: PLI) (OTCQX: PFSCF) ("ProMetic" ... , President and Chief Executive Officer of ProMetic, will be ... th Annual Healthcare Conference to be held at the ... st , at 8.50am (ET) and ProMetic,s management team ... presentation will be available live via a webcast accessible at ...
Breaking Biology Technology:
(Date:11/9/2015)... 2015  Synaptics Inc. (NASDAQ: SYNA ), the ... entry into the automotive market with a comprehensive and ... of consumer electronics human interface innovation. Synaptics, industry-leading touch ... the automotive industry and will be implemented in numerous ... , Japan , and ...
(Date:10/29/2015)... , Oct. 29, 2015 Daon, a ... that it has released a new version of its ... in North America have already ... v4.0 also includes a FIDO UAF certified server ... already preparing to activate FIDO features. These customers include ...
(Date:10/27/2015)... In the present market scenario, security is ... industry verticals such as banking, healthcare, defense, electronic gadgets, ... for secure & simplified access control and growing rate ... of bank accounts, misuse of users, , and so ... laptops, and smartphones are expected to provide potential opportunities ...
Breaking Biology News(10 mins):